langchain/libs/experimental/tests/unit_tests/test_data_anonymizer.py
maks-operlejn-ds 2aae1102b0
Instance anonymization (#10501)
### Description

Add instance anonymization - if `John Doe` will appear twice in the
text, it will be treated as the same entity.
The difference between `PresidioAnonymizer` and
`PresidioReversibleAnonymizer` is that only the second one has a
built-in memory, so it will remember anonymization mapping for multiple
texts:

```
>>> anonymizer = PresidioAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Brett Russell. Hi Brett Russell!'
```
```
>>> anonymizer = PresidioReversibleAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
```

### Twitter handle
@deepsense_ai / @MaksOpp

### Tag maintainer
@baskaryan @hwchase17 @hinthornw

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 11:23:02 -07:00

120 lines
4.5 KiB
Python

from typing import Iterator, List
import pytest
@pytest.fixture(scope="module", autouse=True)
def check_spacy_model() -> Iterator[None]:
import spacy
if not spacy.util.is_package("en_core_web_lg"):
pytest.skip(reason="Spacy model 'en_core_web_lg' not installed")
yield
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
@pytest.mark.parametrize(
"analyzed_fields,should_contain",
[(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)],
)
def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None:
"""Test anonymizing a name in a simple sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = "Hello, my name is John Doe."
anonymizer = PresidioAnonymizer(analyzed_fields=analyzed_fields)
anonymized_text = anonymizer.anonymize(text)
assert ("John Doe" in anonymized_text) == should_contain
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_multiple() -> None:
"""Test anonymizing multiple items in a sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = "John Smith's phone number is 313-666-7440 and email is johnsmith@gmail.com"
anonymizer = PresidioAnonymizer()
anonymized_text = anonymizer.anonymize(text)
for phrase in ["John Smith", "313-666-7440", "johnsmith@gmail.com"]:
assert phrase not in anonymized_text
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_check_instances() -> None:
"""Test anonymizing multiple items in a sentence"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = (
"This is John Smith. John Smith works in a bakery." "John Smith is a good guy"
)
anonymizer = PresidioAnonymizer(["PERSON"], faker_seed=42)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text.count("Connie Lawrence") == 3
# New name should be generated
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text.count("Connie Lawrence") == 0
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_anonymize_with_custom_operator() -> None:
"""Test anonymize a name with a custom operator"""
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})}
anonymizer = PresidioAnonymizer(operators=custom_operator)
text = "Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "NAME was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_add_recognizer_operator() -> None:
"""
Test add recognizer and anonymize a new type of entity and with a custom operator
"""
from presidio_analyzer import PatternRecognizer
from presidio_anonymizer.entities import OperatorConfig
from langchain_experimental.data_anonymizer import PresidioAnonymizer
anonymizer = PresidioAnonymizer(analyzed_fields=[])
titles_list = ["Sir", "Madam", "Professor"]
custom_recognizer = PatternRecognizer(
supported_entity="TITLE", deny_list=titles_list
)
anonymizer.add_recognizer(custom_recognizer)
# anonymizing with custom recognizer
text = "Madam Jane Doe was here."
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "<TITLE> Jane Doe was here."
# anonymizing with custom recognizer and operator
custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})}
anonymizer.add_operators(custom_operator)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == "Dear Jane Doe was here."
@pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker")
def test_non_faker_values() -> None:
"""Test anonymizing multiple items in a sentence without faker values"""
from langchain_experimental.data_anonymizer import PresidioAnonymizer
text = (
"My name is John Smith. Your name is Adam Smith. Her name is Jane Smith."
"Our names are: John Smith, Adam Smith, Jane Smith."
)
expected_result = (
"My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>."
"Our names are: <PERSON>, <PERSON_2>, <PERSON_3>."
)
anonymizer = PresidioAnonymizer(add_default_faker_operators=False)
anonymized_text = anonymizer.anonymize(text)
assert anonymized_text == expected_result