mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
1861cc7100
To match change in js here https://github.com/langchain-ai/langchainjs/pull/2892 Some integration tests need a bit more work in experimental: ![Screenshot 2023-10-12 at 12 02 49 PM](https://github.com/langchain-ai/langchain/assets/9557659/262d7d22-c405-40e9-afef-669e8d585307) Pretty sure the sqldatabase ones are an actual regression or change in interface because it's returning a placeholder. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
214 lines
7.5 KiB
Python
214 lines
7.5 KiB
Python
import json
|
|
from collections import defaultdict
|
|
from html.parser import HTMLParser
|
|
from typing import Any, DefaultDict, Dict, List, Optional
|
|
|
|
from langchain.callbacks.manager import (
|
|
CallbackManagerForLLMRun,
|
|
Callbacks,
|
|
)
|
|
from langchain.chat_models.anthropic import ChatAnthropic
|
|
from langchain.chat_models.base import BaseChatModel
|
|
from langchain.schema import (
|
|
ChatGeneration,
|
|
ChatResult,
|
|
LLMResult,
|
|
)
|
|
from langchain.schema.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
SystemMessage,
|
|
)
|
|
|
|
from langchain_experimental.pydantic_v1 import root_validator
|
|
|
|
prompt = """In addition to responding, you can use tools. \
|
|
You have access to the following tools.
|
|
|
|
{tools}
|
|
|
|
In order to use a tool, you can use <tool></tool> to specify the name, \
|
|
and the <tool_input></tool_input> tags to specify the parameters. \
|
|
Each parameter should be passed in as <$param_name>$value</$param_name>, \
|
|
Where $param_name is the name of the specific parameter, and $value \
|
|
is the value for that parameter.
|
|
|
|
You will then get back a response in the form <observation></observation>
|
|
For example, if you have a tool called 'search' that accepts a single \
|
|
parameter 'query' that could run a google search, in order to search \
|
|
for the weather in SF you would respond:
|
|
|
|
<tool>search</tool><tool_input><query>weather in SF</query></tool_input>
|
|
<observation>64 degrees</observation>"""
|
|
|
|
|
|
class TagParser(HTMLParser):
|
|
def __init__(self) -> None:
|
|
"""A heavy-handed solution, but it's fast for prototyping.
|
|
|
|
Might be re-implemented later to restrict scope to the limited grammar, and
|
|
more efficiency.
|
|
|
|
Uses an HTML parser to parse a limited grammar that allows
|
|
for syntax of the form:
|
|
|
|
INPUT -> JUNK? VALUE*
|
|
JUNK -> JUNK_CHARACTER+
|
|
JUNK_CHARACTER -> whitespace | ,
|
|
VALUE -> <IDENTIFIER>DATA</IDENTIFIER> | OBJECT
|
|
OBJECT -> <IDENTIFIER>VALUE+</IDENTIFIER>
|
|
IDENTIFIER -> [a-Z][a-Z0-9_]*
|
|
DATA -> .*
|
|
|
|
Interprets the data to allow repetition of tags and recursion
|
|
to support representation of complex types.
|
|
|
|
^ Just another approximately wrong grammar specification.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.parse_data: DefaultDict[str, List[Any]] = defaultdict(list)
|
|
self.stack: List[DefaultDict[str, List[str]]] = [self.parse_data]
|
|
self.success = True
|
|
self.depth = 0
|
|
self.data: Optional[str] = None
|
|
|
|
def handle_starttag(self, tag: str, attrs: Any) -> None:
|
|
"""Hook when a new tag is encountered."""
|
|
self.depth += 1
|
|
self.stack.append(defaultdict(list))
|
|
self.data = None
|
|
|
|
def handle_endtag(self, tag: str) -> None:
|
|
"""Hook when a tag is closed."""
|
|
self.depth -= 1
|
|
top_of_stack = dict(self.stack.pop(-1)) # Pop the dictionary we don't need it
|
|
|
|
# If a lead node
|
|
is_leaf = self.data is not None
|
|
# Annoying to type here, code is tested, hopefully OK
|
|
value = self.data if is_leaf else top_of_stack
|
|
# Difficult to type this correctly with mypy (maybe impossible?)
|
|
# Can be nested indefinitely, so requires self referencing type
|
|
self.stack[-1][tag].append(value) # type: ignore
|
|
# Reset the data so we if we encounter a sequence of end tags, we
|
|
# don't confuse an outer end tag for belonging to a leaf node.
|
|
self.data = None
|
|
|
|
def handle_data(self, data: str) -> None:
|
|
"""Hook when handling data."""
|
|
stripped_data = data.strip()
|
|
# The only data that's allowed is whitespace or a comma surrounded by whitespace
|
|
if self.depth == 0 and stripped_data not in (",", ""):
|
|
# If this is triggered the parse should be considered invalid.
|
|
self.success = False
|
|
if stripped_data: # ignore whitespace-only strings
|
|
self.data = stripped_data
|
|
|
|
|
|
def _destrip(tool_input: Any) -> Any:
|
|
if isinstance(tool_input, dict):
|
|
return {k: _destrip(v) for k, v in tool_input.items()}
|
|
elif isinstance(tool_input, list):
|
|
if isinstance(tool_input[0], str):
|
|
if len(tool_input) == 1:
|
|
return tool_input[0]
|
|
else:
|
|
raise ValueError
|
|
elif isinstance(tool_input[0], dict):
|
|
return [_destrip(v) for v in tool_input]
|
|
else:
|
|
raise ValueError
|
|
else:
|
|
raise ValueError
|
|
|
|
|
|
class AnthropicFunctions(BaseChatModel):
|
|
llm: BaseChatModel
|
|
|
|
@root_validator(pre=True)
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
values["llm"] = values.get("llm") or ChatAnthropic(**values)
|
|
return values
|
|
|
|
@property
|
|
def model(self) -> BaseChatModel:
|
|
"""For backwards compatibility."""
|
|
return self.llm
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
forced = False
|
|
function_call = ""
|
|
if "functions" in kwargs:
|
|
content = prompt.format(tools=json.dumps(kwargs["functions"], indent=2))
|
|
system = SystemMessage(content=content)
|
|
messages = [system] + messages
|
|
del kwargs["functions"]
|
|
if stop is None:
|
|
stop = ["</tool_input>"]
|
|
else:
|
|
stop.append("</tool_input>")
|
|
if "function_call" in kwargs:
|
|
forced = True
|
|
function_call = kwargs["function_call"]["name"]
|
|
AIMessage(content=f"<tool>{function_call}</tool>")
|
|
del kwargs["function_call"]
|
|
else:
|
|
if "function_call" in kwargs:
|
|
raise ValueError(
|
|
"if `function_call` provided, `functions` must also be"
|
|
)
|
|
response = self.model.predict_messages(
|
|
messages, stop=stop, callbacks=run_manager, **kwargs
|
|
)
|
|
completion = response.content
|
|
if forced:
|
|
tag_parser = TagParser()
|
|
tag_parser.feed(completion.strip() + "</tool_input>")
|
|
v1 = tag_parser.parse_data["tool_input"][0]
|
|
kwargs = {
|
|
"function_call": {
|
|
"name": function_call,
|
|
"arguments": json.dumps(_destrip(v1)),
|
|
}
|
|
}
|
|
message = AIMessage(content="", additional_kwargs=kwargs)
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
elif "<tool>" in completion:
|
|
tag_parser = TagParser()
|
|
tag_parser.feed(completion.strip() + "</tool_input>")
|
|
msg = completion.split("<tool>")[0]
|
|
v1 = tag_parser.parse_data["tool_input"][0]
|
|
kwargs = {
|
|
"function_call": {
|
|
"name": tag_parser.parse_data["tool"][0],
|
|
"arguments": json.dumps(_destrip(v1)),
|
|
}
|
|
}
|
|
message = AIMessage(content=msg, additional_kwargs=kwargs)
|
|
return ChatResult(generations=[ChatGeneration(message=message)])
|
|
else:
|
|
return ChatResult(generations=[ChatGeneration(message=response)])
|
|
|
|
async def agenerate(
|
|
self,
|
|
messages: List[List[BaseMessage]],
|
|
stop: Optional[List[str]] = None,
|
|
callbacks: Callbacks = None,
|
|
*,
|
|
tags: Optional[List[str]] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "anthropic_functions"
|