mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
a8c916955f
Description: Updates for Nomic AI Atlas and GPT4All integrations documentation. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
176 lines
4.1 KiB
Plaintext
176 lines
4.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# GPT4All\n",
|
|
"\n",
|
|
"[GitHub:nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) an ecosystem of open-source chatbots trained on a massive collections of clean assistant data including code, stories and dialogue.\n",
|
|
"\n",
|
|
"This example goes over how to use LangChain to interact with `GPT4All` models."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%pip install gpt4all > /dev/null"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Import GPT4All"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain import PromptTemplate, LLMChain\n",
|
|
"from langchain.llms import GPT4All\n",
|
|
"from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Set Up Question to pass to LLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"Question: {question}\n",
|
|
"\n",
|
|
"Answer: Let's think step by step.\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Specify Model\n",
|
|
"\n",
|
|
"To run locally, download a compatible ggml-formatted model. \n",
|
|
" \n",
|
|
"The [gpt4all page](https://gpt4all.io/index.html) has a useful `Model Explorer` section:\n",
|
|
"\n",
|
|
"* Select a model of interest\n",
|
|
"* Download using the UI and move the `.bin` to the `local_path` (noted below)\n",
|
|
"\n",
|
|
"For more info, visit https://github.com/nomic-ai/gpt4all.\n",
|
|
"\n",
|
|
"---"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"local_path = (\n",
|
|
" \"./models/ggml-gpt4all-l13b-snoozy.bin\" # replace with your desired local file path\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Callbacks support token-wise streaming\n",
|
|
"callbacks = [StreamingStdOutCallbackHandler()]\n",
|
|
"\n",
|
|
"# Verbose is required to pass to the callback manager\n",
|
|
"llm = GPT4All(model=local_path, callbacks=callbacks, verbose=True)\n",
|
|
"\n",
|
|
"# If you want to use a custom model add the backend parameter\n",
|
|
"# Check https://docs.gpt4all.io/gpt4all_python.html for supported backends\n",
|
|
"llm = GPT4All(model=local_path, backend=\"gptj\", callbacks=callbacks, verbose=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"question = \"What NFL team won the Super Bowl in the year Justin Bieber was born?\"\n",
|
|
"\n",
|
|
"llm_chain.run(question)"
|
|
]
|
|
},
|
|
{
|
|
"attachments": {},
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Justin Bieber was born on March 1, 1994. In 1994, The Cowboys won Super Bowl XXVIII."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.16"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|