langchain/templates/rag-elasticsearch/ingest.py
2023-10-26 19:44:30 -07:00

54 lines
1.6 KiB
Python

import os
from langchain.document_loaders import JSONLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.elasticsearch import ElasticsearchStore
ELASTIC_CLOUD_ID = os.getenv("ELASTIC_CLOUD_ID")
ELASTIC_USERNAME = os.getenv("ELASTIC_USERNAME", "elastic")
ELASTIC_PASSWORD = os.getenv("ELASTIC_PASSWORD")
ES_URL = os.getenv("ES_URL", "http://localhost:9200")
if ELASTIC_CLOUD_ID and ELASTIC_USERNAME and ELASTIC_PASSWORD:
es_connection_details = {
"es_cloud_id": ELASTIC_CLOUD_ID,
"es_user": ELASTIC_USERNAME,
"es_password": ELASTIC_PASSWORD,
}
else:
es_connection_details = {"es_url": ES_URL}
# Metadata extraction function
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["name"] = record.get("name")
metadata["summary"] = record.get("summary")
metadata["url"] = record.get("url")
metadata["category"] = record.get("category")
metadata["updated_at"] = record.get("updated_at")
return metadata
## Load Data
loader = JSONLoader(
file_path="./data/documents.json",
jq_schema=".[]",
content_key="content",
metadata_func=metadata_func,
)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=250)
all_splits = text_splitter.split_documents(loader.load())
# Add to vectorDB
vectorstore = ElasticsearchStore.from_documents(
documents=all_splits,
embedding=HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}
),
**es_connection_details,
index_name="workplace-search-example",
)