mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
9ffca3b92a
Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
64 lines
1.6 KiB
Python
64 lines
1.6 KiB
Python
from langchain.chat_models import ChatOpenAI
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
from langchain.prompts import ChatPromptTemplate
|
|
from langchain.vectorstores import Redis
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.pydantic_v1 import BaseModel
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
|
from rag_redis.config import (
|
|
EMBED_MODEL,
|
|
INDEX_NAME,
|
|
INDEX_SCHEMA,
|
|
REDIS_URL,
|
|
)
|
|
|
|
|
|
# Make this look better in the docs.
|
|
class Question(BaseModel):
|
|
__root__: str
|
|
|
|
|
|
# Init Embeddings
|
|
embedder = HuggingFaceEmbeddings(model_name=EMBED_MODEL)
|
|
|
|
# Connect to pre-loaded vectorstore
|
|
# run the ingest.py script to populate this
|
|
vectorstore = Redis.from_existing_index(
|
|
embedding=embedder, index_name=INDEX_NAME, schema=INDEX_SCHEMA, redis_url=REDIS_URL
|
|
)
|
|
# TODO allow user to change parameters
|
|
retriever = vectorstore.as_retriever(search_type="mmr")
|
|
|
|
|
|
# Define our prompt
|
|
template = """
|
|
Use the following pieces of context from Nike's financial 10k filings
|
|
dataset to answer the question. Do not make up an answer if there is no
|
|
context provided to help answer it. Include the 'source' and 'start_index'
|
|
from the metadata included in the context you used to answer the question
|
|
|
|
Context:
|
|
---------
|
|
{context}
|
|
|
|
---------
|
|
Question: {question}
|
|
---------
|
|
|
|
Answer:
|
|
"""
|
|
|
|
|
|
prompt = ChatPromptTemplate.from_template(template)
|
|
|
|
|
|
# RAG Chain
|
|
model = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
|
chain = (
|
|
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
|
| prompt
|
|
| model
|
|
| StrOutputParser()
|
|
).with_types(input_type=Question)
|