mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
69 lines
2.1 KiB
Python
69 lines
2.1 KiB
Python
from operator import itemgetter
|
|
from typing import List, Optional, Tuple
|
|
|
|
from langchain.chat_models import ChatOpenAI
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
from langchain.schema import BaseMessage, format_document
|
|
from langchain.vectorstores.elasticsearch import ElasticsearchStore
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.pydantic_v1 import BaseModel, Field
|
|
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
|
|
|
from .connection import es_connection_details
|
|
from .prompts import CONDENSE_QUESTION_PROMPT, DOCUMENT_PROMPT, LLM_CONTEXT_PROMPT
|
|
|
|
# Setup connecting to Elasticsearch
|
|
vectorstore = ElasticsearchStore(
|
|
**es_connection_details,
|
|
embedding=HuggingFaceEmbeddings(
|
|
model_name="all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}
|
|
),
|
|
index_name="workplace-search-example",
|
|
)
|
|
retriever = vectorstore.as_retriever()
|
|
|
|
# Set up LLM to user
|
|
llm = ChatOpenAI(temperature=0)
|
|
|
|
|
|
def _combine_documents(
|
|
docs, document_prompt=DOCUMENT_PROMPT, document_separator="\n\n"
|
|
):
|
|
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
|
return document_separator.join(doc_strings)
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple]) -> str:
|
|
buffer = ""
|
|
for dialogue_turn in chat_history:
|
|
human = "Human: " + dialogue_turn[0]
|
|
ai = "Assistant: " + dialogue_turn[1]
|
|
buffer += "\n" + "\n".join([human, ai])
|
|
return buffer
|
|
|
|
|
|
class ChainInput(BaseModel):
|
|
chat_history: Optional[List[BaseMessage]] = Field(
|
|
description="Previous chat messages."
|
|
)
|
|
question: str = Field(..., description="The question to answer.")
|
|
|
|
|
|
_inputs = RunnableParallel(
|
|
standalone_question=RunnablePassthrough.assign(
|
|
chat_history=lambda x: _format_chat_history(x["chat_history"])
|
|
)
|
|
| CONDENSE_QUESTION_PROMPT
|
|
| llm
|
|
| StrOutputParser(),
|
|
)
|
|
|
|
_context = {
|
|
"context": itemgetter("standalone_question") | retriever | _combine_documents,
|
|
"question": lambda x: x["standalone_question"],
|
|
}
|
|
|
|
chain = _inputs | _context | LLM_CONTEXT_PROMPT | llm | StrOutputParser()
|
|
|
|
chain = chain.with_types(input_type=ChainInput)
|