mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
c2a3021bb0
Signed-off-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com> Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Dan O'Donovan <dan.odonovan@gmail.com> Co-authored-by: Tom Daniel Grande <tomdgrande@gmail.com> Co-authored-by: Grande <Tom.Daniel.Grande@statsbygg.no> Co-authored-by: Bagatur <baskaryan@gmail.com> Co-authored-by: ccurme <chester.curme@gmail.com> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com> Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com> Co-authored-by: ZhangShenao <15201440436@163.com> Co-authored-by: Friso H. Kingma <fhkingma@gmail.com> Co-authored-by: ChengZi <chen.zhang@zilliz.com> Co-authored-by: Nuno Campos <nuno@langchain.dev> Co-authored-by: Morgante Pell <morgantep@google.com> |
||
---|---|---|
.. | ||
langchain_qdrant | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-qdrant
This package contains the LangChain integration with Qdrant.
Installation
pip install -U langchain-qdrant
Usage
The Qdrant
class exposes the connection to the Qdrant vector store.
from langchain_qdrant import Qdrant
embeddings = ... # use a LangChain Embeddings class
vectorstore = Qdrant.from_existing_collection(
embeddings=embeddings,
collection_name="<COLLECTION_NAME>",
url="http://localhost:6333",
)