langchain/libs/community/langchain_community/utilities/tensorflow_datasets.py
Bagatur ed58eeb9c5
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463)
Moved the following modules to new package langchain-community in a backwards compatible fashion:

```
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
mv langchain/langchain/adapters community/langchain_community
mv langchain/langchain/callbacks community/langchain_community/callbacks
mv langchain/langchain/chat_loaders community/langchain_community
mv langchain/langchain/chat_models community/langchain_community
mv langchain/langchain/document_loaders community/langchain_community
mv langchain/langchain/docstore community/langchain_community
mv langchain/langchain/document_transformers community/langchain_community
mv langchain/langchain/embeddings community/langchain_community
mv langchain/langchain/graphs community/langchain_community
mv langchain/langchain/llms community/langchain_community
mv langchain/langchain/memory/chat_message_histories community/langchain_community
mv langchain/langchain/retrievers community/langchain_community
mv langchain/langchain/storage community/langchain_community
mv langchain/langchain/tools community/langchain_community
mv langchain/langchain/utilities community/langchain_community
mv langchain/langchain/vectorstores community/langchain_community
mv langchain/langchain/agents/agent_toolkits community/langchain_community
mv langchain/langchain/cache.py community/langchain_community
```

Moved the following to core
```
mv langchain/langchain/utils/json_schema.py core/langchain_core/utils
mv langchain/langchain/utils/html.py core/langchain_core/utils
mv langchain/langchain/utils/strings.py core/langchain_core/utils
cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py
rm langchain/langchain/utils/env.py
```

See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 13:53:30 -08:00

111 lines
3.9 KiB
Python

import logging
from typing import Any, Callable, Dict, Iterator, List, Optional
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import BaseModel, root_validator
logger = logging.getLogger(__name__)
class TensorflowDatasets(BaseModel):
"""Access to the TensorFlow Datasets.
The Current implementation can work only with datasets that fit in a memory.
`TensorFlow Datasets` is a collection of datasets ready to use, with TensorFlow
or other Python ML frameworks, such as Jax. All datasets are exposed
as `tf.data.Datasets`.
To get started see the Guide: https://www.tensorflow.org/datasets/overview and
the list of datasets: https://www.tensorflow.org/datasets/catalog/
overview#all_datasets
You have to provide the sample_to_document_function: a function that
a sample from the dataset-specific format to the Document.
Attributes:
dataset_name: the name of the dataset to load
split_name: the name of the split to load. Defaults to "train".
load_max_docs: a limit to the number of loaded documents. Defaults to 100.
sample_to_document_function: a function that converts a dataset sample
to a Document
Example:
.. code-block:: python
from langchain_community.utilities import TensorflowDatasets
def mlqaen_example_to_document(example: dict) -> Document:
return Document(
page_content=decode_to_str(example["context"]),
metadata={
"id": decode_to_str(example["id"]),
"title": decode_to_str(example["title"]),
"question": decode_to_str(example["question"]),
"answer": decode_to_str(example["answers"]["text"][0]),
},
)
tsds_client = TensorflowDatasets(
dataset_name="mlqa/en",
split_name="train",
load_max_docs=MAX_DOCS,
sample_to_document_function=mlqaen_example_to_document,
)
"""
dataset_name: str = ""
split_name: str = "train"
load_max_docs: int = 100
sample_to_document_function: Optional[Callable[[Dict], Document]] = None
dataset: Any #: :meta private:
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
import tensorflow # noqa: F401
except ImportError:
raise ImportError(
"Could not import tensorflow python package. "
"Please install it with `pip install tensorflow`."
)
try:
import tensorflow_datasets
except ImportError:
raise ImportError(
"Could not import tensorflow_datasets python package. "
"Please install it with `pip install tensorflow-datasets`."
)
if values["sample_to_document_function"] is None:
raise ValueError(
"sample_to_document_function is None. "
"Please provide a function that converts a dataset sample to"
" a Document."
)
values["dataset"] = tensorflow_datasets.load(
values["dataset_name"], split=values["split_name"]
)
return values
def lazy_load(self) -> Iterator[Document]:
"""Download a selected dataset lazily.
Returns: an iterator of Documents.
"""
return (
self.sample_to_document_function(s)
for s in self.dataset.take(self.load_max_docs)
if self.sample_to_document_function is not None
)
def load(self) -> List[Document]:
"""Download a selected dataset.
Returns: a list of Documents.
"""
return list(self.lazy_load())