You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/partners/chroma/langchain_chroma/vectorstores.py

921 lines
34 KiB
Python

from __future__ import annotations
import base64
import logging
import uuid
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Tuple,
Type,
Union,
)
import chromadb
import chromadb.config
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import xor_args
from langchain_core.vectorstores import VectorStore
if TYPE_CHECKING:
from chromadb.api.types import ID, OneOrMany, Where, WhereDocument
logger = logging.getLogger()
DEFAULT_K = 4 # Number of Documents to return.
def _results_to_docs(results: Any) -> List[Document]:
return [doc for doc, _ in _results_to_docs_and_scores(results)]
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
return [
# TODO: Chroma can do batch querying,
# we shouldn't hard code to the 1st result
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
)
]
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray]
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
"""Row-wise cosine similarity between two equal-width matrices.
Raises:
ValueError: If the number of columns in X and Y are not the same.
"""
if len(X) == 0 or len(Y) == 0:
return np.array([])
X = np.array(X)
Y = np.array(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError(
"Number of columns in X and Y must be the same. X has shape"
f"{X.shape} "
f"and Y has shape {Y.shape}."
)
X_norm = np.linalg.norm(X, axis=1)
Y_norm = np.linalg.norm(Y, axis=1)
# Ignore divide by zero errors run time warnings as those are handled below.
with np.errstate(divide="ignore", invalid="ignore"):
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
return similarity
def maximal_marginal_relevance(
query_embedding: np.ndarray,
embedding_list: list,
lambda_mult: float = 0.5,
k: int = 4,
) -> List[int]:
"""Calculate maximal marginal relevance.
Args:
query_embedding: Query embedding.
embedding_list: List of embeddings to select from.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
k: Number of Documents to return. Defaults to 4.
Returns:
List of indices of embeddings selected by maximal marginal relevance.
"""
if min(k, len(embedding_list)) <= 0:
return []
if query_embedding.ndim == 1:
query_embedding = np.expand_dims(query_embedding, axis=0)
similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]
most_similar = int(np.argmax(similarity_to_query))
idxs = [most_similar]
selected = np.array([embedding_list[most_similar]])
while len(idxs) < min(k, len(embedding_list)):
best_score = -np.inf
idx_to_add = -1
similarity_to_selected = cosine_similarity(embedding_list, selected)
for i, query_score in enumerate(similarity_to_query):
if i in idxs:
continue
redundant_score = max(similarity_to_selected[i])
equation_score = (
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
)
if equation_score > best_score:
best_score = equation_score
idx_to_add = i
idxs.append(idx_to_add)
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
return idxs
class Chroma(VectorStore):
"""`ChromaDB` vector store.
To use, you should have the ``chromadb`` python package installed.
Example:
.. code-block:: python
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Chroma("langchain_store", embeddings)
"""
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
def __init__(
self,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
embedding_function: Optional[Embeddings] = None,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
collection_metadata: Optional[Dict] = None,
client: Optional[chromadb.ClientAPI] = None,
relevance_score_fn: Optional[Callable[[float], float]] = None,
create_collection_if_not_exists: Optional[bool] = True,
) -> None:
"""Initialize with a Chroma client.
Args:
collection_name: Name of the collection to create.
embedding_function: Embedding class object. Used to embed texts.
persist_director: Directory to persist the collection.
client_settings: Chroma client settings
collection_metadata: Collection configurations.
client: Chroma client. Documentation:
https://docs.trychroma.com/reference/js-client#class:-chromaclient
relevance_score_fn: Function to calculate relevance score from distance.
Used only in `similarity_search_with_relevance_scores`
create_collection_if_not_exists: Whether to create collection
if it doesn't exist. Defaults to True.
"""
if client is not None:
self._client_settings = client_settings
self._client = client
self._persist_directory = persist_directory
else:
if client_settings:
# If client_settings is provided with persist_directory specified,
# then it is "in-memory and persisting to disk" mode.
client_settings.persist_directory = (
persist_directory or client_settings.persist_directory
)
_client_settings = client_settings
elif persist_directory:
_client_settings = chromadb.config.Settings(is_persistent=True)
_client_settings.persist_directory = persist_directory
else:
_client_settings = chromadb.config.Settings()
self._client_settings = _client_settings
self._client = chromadb.Client(_client_settings)
self._persist_directory = (
_client_settings.persist_directory or persist_directory
)
self._embedding_function = embedding_function
self._chroma_collection: Optional[chromadb.Collection] = None
self._collection_name = collection_name
self._collection_metadata = collection_metadata
if create_collection_if_not_exists:
self.__ensure_collection()
else:
self._chroma_collection = self._client.get_collection(name=collection_name)
self.override_relevance_score_fn = relevance_score_fn
def __ensure_collection(self) -> None:
"""Ensure that the collection exists or create it."""
self._chroma_collection = self._client.get_or_create_collection(
name=self._collection_name,
embedding_function=None,
metadata=self._collection_metadata,
)
@property
def _collection(self) -> chromadb.Collection:
"""Returns the underlying Chroma collection or throws an exception."""
if self._chroma_collection is None:
raise ValueError(
"Chroma collection not initialized. "
"Use `reset_collection` to re-create and initialize the collection. "
)
return self._chroma_collection
@property
def embeddings(self) -> Optional[Embeddings]:
return self._embedding_function
@xor_args(("query_texts", "query_embeddings"))
def __query_collection(
self,
query_texts: Optional[List[str]] = None,
query_embeddings: Optional[List[List[float]]] = None,
n_results: int = 4,
where: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> Union[List[Document], chromadb.QueryResult]:
"""Query the chroma collection.
Args:
query_texts: List of query texts.
query_embeddings: List of query embeddings.
n_results: Number of results to return. Defaults to 4.
where: dict used to filter results by
e.g. {"color" : "red", "price": 4.20}.
where_document: dict used to filter by the documents.
E.g. {$contains: {"text": "hello"}}.
Returns:
List of `n_results` nearest neighbor embeddings for provided
query_embeddings or query_texts.
See more: https://docs.trychroma.com/reference/py-collection#query
"""
return self._collection.query(
query_texts=query_texts,
query_embeddings=query_embeddings, # type: ignore
n_results=n_results,
where=where, # type: ignore
where_document=where_document, # type: ignore
**kwargs,
)
def encode_image(self, uri: str) -> str:
"""Get base64 string from image URI."""
with open(uri, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def add_images(
self,
uris: List[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more images through the embeddings and add to the vectorstore.
Args:
uris: File path to the image.
metadatas: Optional list of metadatas.
When querying, you can filter on this metadata.
ids: Optional list of IDs.
Returns:
List of IDs of the added images.
Raises:
ValueError: When metadata is incorrect.
"""
# Map from uris to b64 encoded strings
b64_texts = [self.encode_image(uri=uri) for uri in uris]
# Populate IDs
if ids is None:
ids = [str(uuid.uuid4()) for _ in uris]
embeddings = None
# Set embeddings
if self._embedding_function is not None and hasattr(
self._embedding_function, "embed_image"
):
embeddings = self._embedding_function.embed_image(uris=uris)
if metadatas:
# fill metadatas with empty dicts if somebody
# did not specify metadata for all images
length_diff = len(uris) - len(metadatas)
if length_diff:
metadatas = metadatas + [{}] * length_diff
empty_ids = []
non_empty_ids = []
for idx, m in enumerate(metadatas):
if m:
non_empty_ids.append(idx)
else:
empty_ids.append(idx)
if non_empty_ids:
metadatas = [metadatas[idx] for idx in non_empty_ids]
images_with_metadatas = [b64_texts[idx] for idx in non_empty_ids]
embeddings_with_metadatas = (
[embeddings[idx] for idx in non_empty_ids] if embeddings else None
)
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
try:
self._collection.upsert(
metadatas=metadatas, # type: ignore
embeddings=embeddings_with_metadatas, # type: ignore
documents=images_with_metadatas,
ids=ids_with_metadata,
)
except ValueError as e:
if "Expected metadata value to be" in str(e):
msg = (
"Try filtering complex metadata using "
"langchain_community.vectorstores.utils.filter_complex_metadata."
)
raise ValueError(e.args[0] + "\n\n" + msg)
else:
raise e
if empty_ids:
images_without_metadatas = [b64_texts[j] for j in empty_ids]
embeddings_without_metadatas = (
[embeddings[j] for j in empty_ids] if embeddings else None
)
ids_without_metadatas = [ids[j] for j in empty_ids]
self._collection.upsert(
embeddings=embeddings_without_metadatas,
documents=images_without_metadatas,
ids=ids_without_metadatas,
)
else:
self._collection.upsert(
embeddings=embeddings,
documents=b64_texts,
ids=ids,
)
return ids
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Texts to add to the vectorstore.
metadatas: Optional list of metadatas.
When querying, you can filter on this metadata.
ids: Optional list of IDs.
Returns:
List of IDs of the added texts.
Raises:
ValueError: When metadata is incorrect.
"""
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
embeddings = None
texts = list(texts)
if self._embedding_function is not None:
embeddings = self._embedding_function.embed_documents(texts)
if metadatas:
# fill metadatas with empty dicts if somebody
# did not specify metadata for all texts
length_diff = len(texts) - len(metadatas)
if length_diff:
metadatas = metadatas + [{}] * length_diff
empty_ids = []
non_empty_ids = []
for idx, m in enumerate(metadatas):
if m:
non_empty_ids.append(idx)
else:
empty_ids.append(idx)
if non_empty_ids:
metadatas = [metadatas[idx] for idx in non_empty_ids]
texts_with_metadatas = [texts[idx] for idx in non_empty_ids]
embeddings_with_metadatas = (
[embeddings[idx] for idx in non_empty_ids] if embeddings else None
)
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
try:
self._collection.upsert(
metadatas=metadatas, # type: ignore
embeddings=embeddings_with_metadatas, # type: ignore
documents=texts_with_metadatas,
ids=ids_with_metadata,
)
except ValueError as e:
if "Expected metadata value to be" in str(e):
msg = (
"Try filtering complex metadata from the document using "
"langchain_community.vectorstores.utils.filter_complex_metadata."
)
raise ValueError(e.args[0] + "\n\n" + msg)
else:
raise e
if empty_ids:
texts_without_metadatas = [texts[j] for j in empty_ids]
embeddings_without_metadatas = (
[embeddings[j] for j in empty_ids] if embeddings else None
)
ids_without_metadatas = [ids[j] for j in empty_ids]
self._collection.upsert(
embeddings=embeddings_without_metadatas, # type: ignore
documents=texts_without_metadatas,
ids=ids_without_metadatas,
)
else:
self._collection.upsert(
embeddings=embeddings, # type: ignore
documents=texts,
ids=ids,
)
return ids
def similarity_search(
self,
query: str,
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with Chroma.
Args:
query: Query text to search for.
k: Number of results to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
Returns:
List of documents most similar to the query text.
"""
docs_and_scores = self.similarity_search_with_score(
query, k, filter=filter, **kwargs
)
return [doc for doc, _ in docs_and_scores]
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
where_document: dict used to filter by the documents.
E.g. {$contains: {"text": "hello"}}.
Returns:
List of Documents most similar to the query vector.
"""
results = self.__query_collection(
query_embeddings=embedding,
n_results=k,
where=filter,
where_document=where_document,
**kwargs,
)
return _results_to_docs(results)
def similarity_search_by_vector_with_relevance_scores(
self,
embedding: List[float],
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""
Return docs most similar to embedding vector and similarity score.
Args:
embedding (List[float]): Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
where_document: dict used to filter by the documents.
E.g. {$contains: {"text": "hello"}}.
Returns:
List of documents most similar to the query text and relevance score
in float for each. Lower score represents more similarity.
"""
results = self.__query_collection(
query_embeddings=embedding,
n_results=k,
where=filter,
where_document=where_document,
**kwargs,
)
return _results_to_docs_and_scores(results)
def similarity_search_with_score(
self,
query: str,
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Run similarity search with Chroma with distance.
Args:
query: Query text to search for.
k: Number of results to return. Defaults to 4.
filter: Filter by metadata. Defaults to None.
where_document: dict used to filter by the documents.
E.g. {$contains: {"text": "hello"}}.
Returns:
List of documents most similar to the query text and
distance in float for each. Lower score represents more similarity.
"""
if self._embedding_function is None:
results = self.__query_collection(
query_texts=[query],
n_results=k,
where=filter,
where_document=where_document,
**kwargs,
)
else:
query_embedding = self._embedding_function.embed_query(query)
results = self.__query_collection(
query_embeddings=[query_embedding],
n_results=k,
where=filter,
where_document=where_document,
**kwargs,
)
return _results_to_docs_and_scores(results)
def _select_relevance_score_fn(self) -> Callable[[float], float]:
"""Select the relevance score function based on collections distance metric.
The most similar documents will have the lowest relevance score. Default
relevance score function is euclidean distance. Distance metric must be
provided in `collection_metadata` during initizalition of Chroma object.
Example: collection_metadata={"hnsw:space": "cosine"}. Available distance
metrics are: 'cosine', 'l2' and 'ip'.
Returns:
The relevance score function.
Raises:
ValueError: If the distance metric is not supported.
"""
if self.override_relevance_score_fn:
return self.override_relevance_score_fn
distance = "l2"
distance_key = "hnsw:space"
metadata = self._collection.metadata
if metadata and distance_key in metadata:
distance = metadata[distance_key]
if distance == "cosine":
return self._cosine_relevance_score_fn
elif distance == "l2":
return self._euclidean_relevance_score_fn
elif distance == "ip":
return self._max_inner_product_relevance_score_fn
else:
raise ValueError(
"No supported normalization function"
f" for distance metric of type: {distance}."
"Consider providing relevance_score_fn to Chroma constructor."
)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = DEFAULT_K,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to
20.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter by metadata. Defaults to None.
Returns:
List of Documents selected by maximal marginal relevance.
"""
results = self.__query_collection(
query_embeddings=embedding,
n_results=fetch_k,
where=filter,
where_document=where_document,
include=["metadatas", "documents", "distances", "embeddings"],
**kwargs,
)
mmr_selected = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
results["embeddings"][0],
k=k,
lambda_mult=lambda_mult,
)
candidates = _results_to_docs(results)
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
return selected_results
def max_marginal_relevance_search(
self,
query: str,
k: int = DEFAULT_K,
fetch_k: int = 20,
lambda_mult: float = 0.5,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
filter: Filter by metadata. Defaults to None.
where_document: dict used to filter by the documents.
E.g. {$contains: {"text": "hello"}}.
Returns:
List of Documents selected by maximal marginal relevance.
Raises:
ValueError: If the embedding function is not provided.
"""
if self._embedding_function is None:
raise ValueError(
"For MMR search, you must specify an embedding function on" "creation."
)
embedding = self._embedding_function.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding,
k,
fetch_k,
lambda_mult=lambda_mult,
filter=filter,
where_document=where_document,
)
def delete_collection(self) -> None:
"""Delete the collection."""
self._client.delete_collection(self._collection.name)
self._chroma_collection = None
def reset_collection(self) -> None:
"""Resets the collection by deleting the collection
and recreating an empty one."""
self.delete_collection()
self.__ensure_collection()
def get(
self,
ids: Optional[OneOrMany[ID]] = None,
where: Optional[Where] = None,
limit: Optional[int] = None,
offset: Optional[int] = None,
where_document: Optional[WhereDocument] = None,
include: Optional[List[str]] = None,
) -> Dict[str, Any]:
"""Gets the collection.
Args:
ids: The ids of the embeddings to get. Optional.
where: A Where type dict used to filter results by.
E.g. `{"color" : "red", "price": 4.20}`. Optional.
limit: The number of documents to return. Optional.
offset: The offset to start returning results from.
Useful for paging results with limit. Optional.
where_document: A WhereDocument type dict used to filter by the documents.
E.g. `{$contains: "hello"}`. Optional.
include: A list of what to include in the results.
Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
Ids are always included.
Defaults to `["metadatas", "documents"]`. Optional.
Return:
A dict with the keys `"ids"`, `"embeddings"`, `"metadatas"`, `"documents"`.
"""
kwargs = {
"ids": ids,
"where": where,
"limit": limit,
"offset": offset,
"where_document": where_document,
}
if include is not None:
kwargs["include"] = include
return self._collection.get(**kwargs) # type: ignore
def update_document(self, document_id: str, document: Document) -> None:
"""Update a document in the collection.
Args:
document_id: ID of the document to update.
document: Document to update.
"""
return self.update_documents([document_id], [document])
# type: ignore
def update_documents(self, ids: List[str], documents: List[Document]) -> None:
"""Update a document in the collection.
Args:
ids: List of ids of the document to update.
documents: List of documents to update.
Raises:
ValueError: If the embedding function is not provided.
"""
text = [document.page_content for document in documents]
metadata = [document.metadata for document in documents]
if self._embedding_function is None:
raise ValueError(
"For update, you must specify an embedding function on creation."
)
embeddings = self._embedding_function.embed_documents(text)
if hasattr(
self._collection._client, "max_batch_size"
): # for Chroma 0.4.10 and above
from chromadb.utils.batch_utils import create_batches
for batch in create_batches(
api=self._collection._client,
ids=ids,
metadatas=metadata, # type: ignore
documents=text,
embeddings=embeddings, # type: ignore
):
self._collection.update(
ids=batch[0],
embeddings=batch[1],
documents=batch[3],
metadatas=batch[2],
)
else:
self._collection.update(
ids=ids,
embeddings=embeddings, # type: ignore
documents=text,
metadatas=metadata, # type: ignore
)
@classmethod
def from_texts(
cls: Type[Chroma],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.ClientAPI] = None,
collection_metadata: Optional[Dict] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a raw documents.
If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
Args:
texts: List of texts to add to the collection.
collection_name: Name of the collection to create.
persist_directory: Directory to persist the collection.
embedding: Embedding function. Defaults to None.
metadatas: List of metadatas. Defaults to None.
ids: List of document IDs. Defaults to None.
client_settings: Chroma client settings
collection_metadata: Collection configurations.
Defaults to None.
Returns:
Chroma: Chroma vectorstore.
"""
chroma_collection = cls(
collection_name=collection_name,
embedding_function=embedding,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
collection_metadata=collection_metadata,
**kwargs,
)
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
if hasattr(
chroma_collection._client, "max_batch_size"
): # for Chroma 0.4.10 and above
from chromadb.utils.batch_utils import create_batches
for batch in create_batches(
api=chroma_collection._client,
ids=ids,
metadatas=metadatas, # type: ignore
documents=texts,
):
chroma_collection.add_texts(
texts=batch[3] if batch[3] else [],
metadatas=batch[2] if batch[2] else None, # type: ignore
ids=batch[0],
)
else:
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return chroma_collection
@classmethod
def from_documents(
cls: Type[Chroma],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
persist_directory: Optional[str] = None,
client_settings: Optional[chromadb.config.Settings] = None,
client: Optional[chromadb.ClientAPI] = None, # Add this line
collection_metadata: Optional[Dict] = None,
**kwargs: Any,
) -> Chroma:
"""Create a Chroma vectorstore from a list of documents.
If a persist_directory is specified, the collection will be persisted there.
Otherwise, the data will be ephemeral in-memory.
Args:
collection_name: Name of the collection to create.
persist_directory: Directory to persist the collection.
ids : List of document IDs. Defaults to None.
documents: List of documents to add to the vectorstore.
embedding: Embedding function. Defaults to None.
client_settings: Chroma client settings
collection_metadata: Collection configurations.
Defaults to None.
Returns:
Chroma: Chroma vectorstore.
"""
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
persist_directory=persist_directory,
client_settings=client_settings,
client=client,
collection_metadata=collection_metadata,
**kwargs,
)
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
"""Delete by vector IDs.
Args:
ids: List of ids to delete.
"""
self._collection.delete(ids=ids)