langchain/libs/partners/anthropic/tests/integration_tests/test_experimental.py
2024-06-03 08:21:55 -07:00

170 lines
5.3 KiB
Python

"""Test ChatAnthropic chat model."""
from enum import Enum
from typing import List, Optional
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_anthropic.experimental import ChatAnthropicTools
MODEL_NAME = "claude-3-sonnet-20240229"
BIG_MODEL_NAME = "claude-3-opus-20240229"
#####################################
### Test Basic features, no tools ###
#####################################
def test_stream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_astream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
async def test_abatch() -> None:
"""Test streaming tokens from ChatAnthropicTools."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatAnthropicTools."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicTools."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatAnthropicTools."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatAnthropicTools."""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_system_invoke() -> None:
"""Test invoke tokens with a system message"""
llm = ChatAnthropicTools(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert cartographer. If asked, you are a cartographer. "
"STAY IN CHARACTER",
),
("human", "Are you a mathematician?"),
]
)
chain = prompt | llm
result = chain.invoke({})
assert isinstance(result.content, str)
##################
### Test Tools ###
##################
def test_with_structured_output() -> None:
class Person(BaseModel):
name: str
age: int
chain = ChatAnthropicTools( # type: ignore[call-arg, call-arg]
model_name=BIG_MODEL_NAME,
temperature=0,
default_headers={"anthropic-beta": "tools-2024-04-04"},
).with_structured_output(Person)
result = chain.invoke("Erick is 27 years old")
assert isinstance(result, Person)
assert result.name == "Erick"
assert result.age == 27
def test_anthropic_complex_structured_output() -> None:
class ToneEnum(str, Enum):
positive = "positive"
negative = "negative"
class Email(BaseModel):
"""Relevant information about an email."""
sender: Optional[str] = Field(
None, description="The sender's name, if available"
)
sender_phone_number: Optional[str] = Field(
None, description="The sender's phone number, if available"
)
sender_address: Optional[str] = Field(
None, description="The sender's address, if available"
)
action_items: List[str] = Field(
..., description="A list of action items requested by the email"
)
topic: str = Field(
..., description="High level description of what the email is about"
)
tone: ToneEnum = Field(..., description="The tone of the email.")
prompt = ChatPromptTemplate.from_messages(
[
(
"human",
"What can you tell me about the following email? Make sure to answer in the correct format: {email}", # noqa: E501
),
]
)
llm = ChatAnthropicTools( # type: ignore[call-arg, call-arg]
temperature=0,
model_name=BIG_MODEL_NAME,
default_headers={"anthropic-beta": "tools-2024-04-04"},
)
extraction_chain = prompt | llm.with_structured_output(Email)
response = extraction_chain.invoke(
{
"email": "From: Erick. The email is about the new project. The tone is positive. The action items are to send the report and to schedule a meeting." # noqa: E501
}
)
assert isinstance(response, Email)