langchain/libs/community/tests/unit_tests/chains/test_pebblo_retrieval.py
Rahul Triptahi 77ad857934
community[minor]: Enable retrieval api calls in PebbloRetrievalQA (#21958)
Description: Enable app discovery and Prompt/Response apis in
PebbloSafeRetrieval
Documentation: NA
Unit test: N/A

---------

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-06-04 10:18:50 -07:00

141 lines
3.9 KiB
Python

"""
Unit tests for the PebbloRetrievalQA chain
"""
from typing import List
from unittest.mock import Mock
import pytest
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
from langchain_community.chains import PebbloRetrievalQA
from langchain_community.chains.pebblo_retrieval.models import (
AuthContext,
ChainInput,
SemanticContext,
)
from langchain_community.vectorstores.chroma import Chroma
from langchain_community.vectorstores.pinecone import Pinecone
from tests.unit_tests.llms.fake_llm import FakeLLM
class FakeRetriever(VectorStoreRetriever):
"""
Test util that parrots the query back as documents
"""
vectorstore: VectorStore = Mock()
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
return [Document(page_content=query)]
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
return [Document(page_content=query)]
@pytest.fixture
def unsupported_retriever() -> FakeRetriever:
"""
Create a FakeRetriever instance
"""
retriever = FakeRetriever()
retriever.search_kwargs = {}
# Set the class of vectorstore to Chroma
retriever.vectorstore.__class__ = Chroma
return retriever
@pytest.fixture
def retriever() -> FakeRetriever:
"""
Create a FakeRetriever instance
"""
retriever = FakeRetriever()
retriever.search_kwargs = {}
# Set the class of vectorstore to Pinecone
retriever.vectorstore.__class__ = Pinecone
return retriever
@pytest.fixture
def pebblo_retrieval_qa(retriever: FakeRetriever) -> PebbloRetrievalQA:
"""
Create a PebbloRetrievalQA instance
"""
pebblo_retrieval_qa = PebbloRetrievalQA.from_chain_type(
llm=FakeLLM(),
chain_type="stuff",
retriever=retriever,
owner="owner",
description="description",
app_name="app_name",
)
return pebblo_retrieval_qa
def test_invoke(pebblo_retrieval_qa: PebbloRetrievalQA) -> None:
"""
Test that the invoke method returns a non-None result
"""
# Create a fake auth context and semantic context
auth_context = AuthContext(
user_id="fake_user@email.com",
user_auth=["fake-group", "fake-group2"],
)
semantic_context_dict = {
"pebblo_semantic_topics": {"deny": ["harmful-advice"]},
"pebblo_semantic_entities": {"deny": ["credit-card"]},
}
semantic_context = SemanticContext(**semantic_context_dict)
question = "What is the meaning of life?"
chain_input_obj = ChainInput(
query=question, auth_context=auth_context, semantic_context=semantic_context
)
response = pebblo_retrieval_qa.invoke(chain_input_obj.dict())
assert response is not None
def test_validate_vectorstore(
retriever: FakeRetriever, unsupported_retriever: FakeRetriever
) -> None:
"""
Test vectorstore validation
"""
# No exception should be raised for supported vectorstores (Pinecone)
_ = PebbloRetrievalQA.from_chain_type(
llm=FakeLLM(),
chain_type="stuff",
retriever=retriever,
owner="owner",
description="description",
app_name="app_name",
)
# validate_vectorstore method should raise a ValueError for unsupported vectorstores
with pytest.raises(ValueError) as exc_info:
_ = PebbloRetrievalQA.from_chain_type(
llm=FakeLLM(),
chain_type="stuff",
retriever=unsupported_retriever,
owner="owner",
description="description",
app_name="app_name",
)
assert (
"Vectorstore must be an instance of one of the supported vectorstores"
in str(exc_info.value)
)