langchain/libs/community/tests/unit_tests/callbacks/test_openai_info.py
Jirka Lhotka 7c0459faf2
community: Update costs of openai finetuned models (#22124)
- **Description:** Update costs of finetuned models and add
gpt-3-turbo-0125. Source: https://openai.com/api/pricing/
  - **Issue:** N/A
  - **Dependencies:** None
2024-05-24 15:25:17 +00:00

152 lines
4.3 KiB
Python

from unittest.mock import MagicMock
from uuid import uuid4
import numpy as np
import pytest
from langchain_core.outputs import LLMResult
from langchain_community.callbacks import OpenAICallbackHandler
from langchain_community.llms.openai import BaseOpenAI
@pytest.fixture
def handler() -> OpenAICallbackHandler:
return OpenAICallbackHandler()
def test_on_llm_end(handler: OpenAICallbackHandler) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": BaseOpenAI.__fields__["model_name"].default,
},
)
handler.on_llm_end(response)
assert handler.successful_requests == 1
assert handler.total_tokens == 3
assert handler.prompt_tokens == 2
assert handler.completion_tokens == 1
assert handler.total_cost > 0
def test_on_llm_end_custom_model(handler: OpenAICallbackHandler) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 2,
"completion_tokens": 1,
"total_tokens": 3,
},
"model_name": "foo-bar",
},
)
handler.on_llm_end(response)
assert handler.total_cost == 0
@pytest.mark.parametrize(
"model_name, expected_cost",
[
("ada:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.0032),
("babbage:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.0048),
("curie:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.024),
("davinci:ft-your-org:custom-model-name-2022-02-15-04-21-04", 0.24),
("ft:babbage-002:your-org:custom-model-name:1abcdefg", 0.0032),
("ft:davinci-002:your-org:custom-model-name:1abcdefg", 0.024),
("ft:gpt-3.5-turbo-0613:your-org:custom-model-name:1abcdefg", 0.009),
("babbage-002.ft-0123456789abcdefghijklmnopqrstuv", 0.0008),
("davinci-002.ft-0123456789abcdefghijklmnopqrstuv", 0.004),
("gpt-35-turbo-0613.ft-0123456789abcdefghijklmnopqrstuv", 0.0035),
],
)
def test_on_llm_end_finetuned_model(
handler: OpenAICallbackHandler, model_name: str, expected_cost: float
) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 1000,
"completion_tokens": 1000,
"total_tokens": 2000,
},
"model_name": model_name,
},
)
handler.on_llm_end(response)
assert np.isclose(handler.total_cost, expected_cost)
@pytest.mark.parametrize(
"model_name,expected_cost",
[
("gpt-35-turbo", 0.0035),
("gpt-35-turbo-0301", 0.0035),
(
"gpt-35-turbo-0613",
0.0035,
),
(
"gpt-35-turbo-16k-0613",
0.007,
),
(
"gpt-35-turbo-16k",
0.007,
),
("gpt-4", 0.09),
("gpt-4-0314", 0.09),
("gpt-4-0613", 0.09),
("gpt-4-32k", 0.18),
("gpt-4-32k-0314", 0.18),
("gpt-4-32k-0613", 0.18),
],
)
def test_on_llm_end_azure_openai(
handler: OpenAICallbackHandler, model_name: str, expected_cost: float
) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 1000,
"completion_tokens": 1000,
"total_tokens": 2000,
},
"model_name": model_name,
},
)
handler.on_llm_end(response)
assert handler.total_cost == expected_cost
@pytest.mark.parametrize(
"model_name", ["gpt-35-turbo-16k-0301", "gpt-4-0301", "gpt-4-32k-0301"]
)
def test_on_llm_end_no_cost_invalid_model(
handler: OpenAICallbackHandler, model_name: str
) -> None:
response = LLMResult(
generations=[],
llm_output={
"token_usage": {
"prompt_tokens": 1000,
"completion_tokens": 1000,
"total_tokens": 2000,
},
"model_name": model_name,
},
)
handler.on_llm_end(response)
assert handler.total_cost == 0
def test_on_retry_works(handler: OpenAICallbackHandler) -> None:
handler.on_retry(MagicMock(), run_id=uuid4())