langchain/libs/community/tests/integration_tests/llms/test_huggingface_pipeline.py
ccurme 481d3855dc
patch: remove usage of llm, chat model __call__ (#20788)
- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
2024-04-24 19:39:23 -04:00

125 lines
4.3 KiB
Python
Executable File

"""Test HuggingFace Pipeline wrapper."""
from pathlib import Path
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
def test_huggingface_pipeline_text_generation() -> None:
"""Test valid call to HuggingFace text generation model."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_text2text_generation() -> None:
"""Test valid call to HuggingFace text2text generation model."""
llm = HuggingFacePipeline.from_model_id(
model_id="google/flan-t5-small", task="text2text-generation"
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_device_map() -> None:
"""Test pipelines specifying the device map parameter."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
device_map="auto",
pipeline_kwargs={"max_new_tokens": 10},
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def text_huggingface_pipeline_summarization() -> None:
"""Test valid call to HuggingFace summarization model."""
llm = HuggingFacePipeline.from_model_id(
model_id="facebook/bart-large-cnn", task="summarization"
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an HuggingFaceHub LLM."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
)
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)
def test_init_with_pipeline() -> None:
"""Test initialization with a HF pipeline."""
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
llm = HuggingFacePipeline(pipeline=pipe)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_runtime_kwargs() -> None:
"""Test pipelines specifying the device map parameter."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
)
prompt = "Say foo:"
output = llm.invoke(prompt, pipeline_kwargs={"max_new_tokens": 2})
assert len(output) < 10
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
def test_huggingface_pipeline_text_generation_ov() -> None:
"""Test valid call to HuggingFace text generation model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_text2text_generation_ov() -> None:
"""Test valid call to HuggingFace text2text generation model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="google/flan-t5-small",
task="text2text-generation",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)
def text_huggingface_pipeline_summarization_ov() -> None:
"""Test valid call to HuggingFace summarization model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="facebook/bart-large-cnn",
task="summarization",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm.invoke("Say foo:")
assert isinstance(output, str)