langchain/libs/community/tests/integration_tests/llms/test_gradient_ai.py
ccurme 481d3855dc
patch: remove usage of llm, chat model __call__ (#20788)
- `llm(prompt)` -> `llm.invoke(prompt)`
- `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`)
- `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt,
config={"callbacks": callbacks})`
- `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
2024-04-24 19:39:23 -04:00

49 lines
1.6 KiB
Python

"""Test GradientAI API wrapper.
In order to run this test, you need to have an GradientAI api key.
You can get it by registering for free at https://gradient.ai/.
You'll then need to set:
- `GRADIENT_ACCESS_TOKEN` environment variable to your api key.
- `GRADIENT_WORKSPACE_ID` environment variable to your workspace id.
- `GRADIENT_MODEL` environment variable to your workspace id.
"""
import os
from langchain_community.llms import GradientLLM
def test_gradient_acall() -> None:
"""Test simple call to gradient.ai."""
model = os.environ["GRADIENT_MODEL"]
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"]
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"]
llm = GradientLLM(
model=model,
gradient_access_token=gradient_access_token,
gradient_workspace_id=gradient_workspace_id,
)
output = llm.invoke("Say hello:", temperature=0.2, max_tokens=250)
assert llm._llm_type == "gradient"
assert isinstance(output, str)
assert len(output)
async def test_gradientai_acall() -> None:
"""Test async call to gradient.ai."""
model = os.environ["GRADIENT_MODEL"]
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"]
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"]
llm = GradientLLM(
model=model,
gradient_access_token=gradient_access_token,
gradient_workspace_id=gradient_workspace_id,
)
output = await llm.agenerate(["Say hello:"], temperature=0.2, max_tokens=250)
assert llm._llm_type == "gradient"
assert isinstance(output, str)
assert len(output)