You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
langchain/libs/community/langchain_community/vectorstores/inmemory.py

233 lines
7.1 KiB
Python

import json
import uuid
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.load import dumpd, load
from langchain_core.vectorstores import VectorStore
from langchain_community.utils.math import cosine_similarity
from langchain_community.vectorstores.utils import maximal_marginal_relevance
class InMemoryVectorStore(VectorStore):
"""In-memory implementation of VectorStore using a dictionary.
Uses numpy to compute cosine similarity for search.
Args:
embedding: embedding function to use.
"""
def __init__(self, embedding: Embeddings) -> None:
self.store: Dict[str, Dict[str, Any]] = {}
self.embedding = embedding
@property
def embeddings(self) -> Embeddings:
return self.embedding
def delete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
if ids:
for _id in ids:
self.store.pop(_id, None)
async def adelete(self, ids: Optional[Sequence[str]] = None, **kwargs: Any) -> None:
self.delete(ids)
def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[Sequence[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Add texts to the store."""
vectors = self.embedding.embed_documents(list(texts))
ids_ = []
for i, text in enumerate(texts):
doc_id = ids[i] if ids else str(uuid.uuid4())
ids_.append(doc_id)
self.store[doc_id] = {
"id": doc_id,
"vector": vectors[i],
"text": text,
"metadata": metadatas[i] if metadatas else {},
}
return ids_
async def aadd_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
return self.add_texts(texts, metadatas, **kwargs)
def _similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Callable[[Document], bool]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float, List[float]]]:
result = []
for doc in self.store.values():
vector = doc["vector"]
similarity = float(cosine_similarity([embedding], [vector]).item(0))
result.append(
(
Document(page_content=doc["text"], metadata=doc["metadata"]),
similarity,
vector,
)
)
result.sort(key=lambda x: x[1], reverse=True)
if filter is not None:
result = [r for r in result if filter(r[0])]
return result[:k]
def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[Callable[[Document], bool]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
return [
(doc, similarity)
for doc, similarity, _ in self._similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter, **kwargs
)
]
def similarity_search_with_score(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
embedding = self.embedding.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding,
k,
**kwargs,
)
return docs
async def asimilarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
return self.similarity_search_with_score(query, k, **kwargs)
def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
**kwargs: Any,
) -> List[Document]:
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding,
k,
**kwargs,
)
return [doc for doc, _ in docs_and_scores]
async def asimilarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
return self.similarity_search_by_vector(embedding, k, **kwargs)
def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
return [doc for doc, _ in self.similarity_search_with_score(query, k, **kwargs)]
async def asimilarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
return self.similarity_search(query, k, **kwargs)
def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
prefetch_hits = self._similarity_search_with_score_by_vector(
embedding=embedding,
k=fetch_k,
**kwargs,
)
mmr_chosen_indices = maximal_marginal_relevance(
np.array(embedding, dtype=np.float32),
[vector for _, _, vector in prefetch_hits],
k=k,
lambda_mult=lambda_mult,
)
return [prefetch_hits[idx][0] for idx in mmr_chosen_indices]
def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
embedding_vector = self.embedding.embed_query(query)
return self.max_marginal_relevance_search_by_vector(
embedding_vector,
k,
fetch_k,
lambda_mult=lambda_mult,
**kwargs,
)
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "InMemoryVectorStore":
store = cls(
embedding=embedding,
)
store.add_texts(texts=texts, metadatas=metadatas, **kwargs)
return store
@classmethod
async def afrom_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> "InMemoryVectorStore":
return cls.from_texts(texts, embedding, metadatas, **kwargs)
@classmethod
def load(
cls, path: str, embedding: Embeddings, **kwargs: Any
) -> "InMemoryVectorStore":
_path: Path = Path(path)
with _path.open("r") as f:
store = load(json.load(f))
vectorstore = cls(embedding=embedding, **kwargs)
vectorstore.store = store
return vectorstore
def dump(self, path: str) -> None:
_path: Path = Path(path)
_path.parent.mkdir(exist_ok=True, parents=True)
with _path.open("w") as f:
json.dump(dumpd(self.store), f, indent=2)