langchain/libs/community/langchain_community/tools/connery/tool.py
Leonid Ganeline 7cf2d2759d
community[patch]: docstrings update (#20301)
Added missed docstrings. Format docstings to the consistent form.
2024-04-11 16:23:27 -04:00

162 lines
5.4 KiB
Python

import asyncio
from functools import partial
from typing import Any, Dict, List, Optional, Type
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.pydantic_v1 import BaseModel, Field, create_model, root_validator
from langchain_core.tools import BaseTool
from langchain_community.tools.connery.models import Action, Parameter
class ConneryAction(BaseTool):
"""Connery Action tool."""
name: str
description: str
args_schema: Type[BaseModel]
action: Action
connery_service: Any
def _run(
self,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Dict[str, str],
) -> Dict[str, str]:
"""
Runs the Connery Action with the provided input.
Parameters:
kwargs (Dict[str, str]): The input dictionary expected by the action.
Returns:
Dict[str, str]: The output of the action.
"""
return self.connery_service.run_action(self.action.id, kwargs)
async def _arun(
self,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Dict[str, str],
) -> Dict[str, str]:
"""
Runs the Connery Action asynchronously with the provided input.
Parameters:
kwargs (Dict[str, str]): The input dictionary expected by the action.
Returns:
Dict[str, str]: The output of the action.
"""
func = partial(self._run, **kwargs)
return await asyncio.get_event_loop().run_in_executor(None, func)
def get_schema_json(self) -> str:
"""
Returns the JSON representation of the Connery Action Tool schema.
This is useful for debugging.
Returns:
str: The JSON representation of the Connery Action Tool schema.
"""
return self.args_schema.schema_json(indent=2)
@root_validator()
def validate_attributes(cls, values: dict) -> dict:
"""
Validate the attributes of the ConneryAction class.
Parameters:
values (dict): The arguments to validate.
Returns:
dict: The validated arguments.
"""
# Import ConneryService here and check if it is an instance
# of ConneryService to avoid circular imports
from .service import ConneryService
if not isinstance(values.get("connery_service"), ConneryService):
raise ValueError(
"The attribute 'connery_service' must be an instance of ConneryService."
)
if not values.get("name"):
raise ValueError("The attribute 'name' must be set.")
if not values.get("description"):
raise ValueError("The attribute 'description' must be set.")
if not values.get("args_schema"):
raise ValueError("The attribute 'args_schema' must be set.")
if not values.get("action"):
raise ValueError("The attribute 'action' must be set.")
if not values.get("connery_service"):
raise ValueError("The attribute 'connery_service' must be set.")
return values
@classmethod
def create_instance(cls, action: Action, connery_service: Any) -> "ConneryAction":
"""
Creates a Connery Action Tool from a Connery Action.
Parameters:
action (Action): The Connery Action to wrap in a Connery Action Tool.
connery_service (ConneryService): The Connery Service
to run the Connery Action. We use Any here to avoid circular imports.
Returns:
ConneryAction: The Connery Action Tool.
"""
# Import ConneryService here and check if it is an instance
# of ConneryService to avoid circular imports
from .service import ConneryService
if not isinstance(connery_service, ConneryService):
raise ValueError(
"The connery_service must be an instance of ConneryService."
)
input_schema = cls._create_input_schema(action.inputParameters)
description = action.title + (
": " + action.description if action.description else ""
)
instance = cls(
name=action.id,
description=description,
args_schema=input_schema,
action=action,
connery_service=connery_service,
)
return instance
@classmethod
def _create_input_schema(cls, inputParameters: List[Parameter]) -> Type[BaseModel]:
"""
Creates an input schema for a Connery Action Tool
based on the input parameters of the Connery Action.
Parameters:
inputParameters: List of input parameters of the Connery Action.
Returns:
Type[BaseModel]: The input schema for the Connery Action Tool.
"""
dynamic_input_fields: Dict[str, Any] = {}
for param in inputParameters:
default = ... if param.validation and param.validation.required else None
title = param.title
description = param.title + (
": " + param.description if param.description else ""
)
type = param.type
dynamic_input_fields[param.key] = (
str,
Field(default, title=title, description=description, type=type),
)
InputModel = create_model("InputSchema", **dynamic_input_fields)
return InputModel