langchain/libs/community/langchain_community/chains/pebblo_retrieval/base.py
Eugene Yurtsev 05d31a2f00
community[patch]: Add missing type annotations (#22758)
Add missing type annotations to objects in community.
These missing type annotations will raise type errors in pydantic 2.
2024-06-10 16:59:28 -04:00

482 lines
17 KiB
Python

"""
Pebblo Retrieval Chain with Identity & Semantic Enforcement for question-answering
against a vector database.
"""
import datetime
import inspect
import logging
from http import HTTPStatus
from typing import Any, Dict, List, Optional
import requests # type: ignore
from langchain.chains.base import Chain
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
from langchain_core.callbacks import (
AsyncCallbackManagerForChainRun,
CallbackManagerForChainRun,
)
from langchain_core.documents import Document
from langchain_core.language_models import BaseLanguageModel
from langchain_core.pydantic_v1 import Extra, Field, validator
from langchain_core.vectorstores import VectorStoreRetriever
from langchain_community.chains.pebblo_retrieval.enforcement_filters import (
SUPPORTED_VECTORSTORES,
set_enforcement_filters,
)
from langchain_community.chains.pebblo_retrieval.models import (
App,
AuthContext,
Qa,
SemanticContext,
)
from langchain_community.chains.pebblo_retrieval.utilities import (
APP_DISCOVER_URL,
CLASSIFIER_URL,
PEBBLO_CLOUD_URL,
PLUGIN_VERSION,
PROMPT_URL,
get_runtime,
)
logger = logging.getLogger(__name__)
class PebbloRetrievalQA(Chain):
"""
Retrieval Chain with Identity & Semantic Enforcement for question-answering
against a vector database.
"""
combine_documents_chain: BaseCombineDocumentsChain
"""Chain to use to combine the documents."""
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
return_source_documents: bool = False
"""Return the source documents or not."""
retriever: VectorStoreRetriever = Field(exclude=True)
"""VectorStore to use for retrieval."""
auth_context_key: str = "auth_context" #: :meta private:
"""Authentication context for identity enforcement."""
semantic_context_key: str = "semantic_context" #: :meta private:
"""Semantic context for semantic enforcement."""
app_name: str #: :meta private:
"""App name."""
owner: str #: :meta private:
"""Owner of app."""
description: str #: :meta private:
"""Description of app."""
api_key: Optional[str] = None #: :meta private:
"""Pebblo cloud API key for app."""
classifier_url: str = CLASSIFIER_URL #: :meta private:
"""Classifier endpoint."""
_discover_sent: bool = False #: :meta private:
"""Flag to check if discover payload has been sent."""
_prompt_sent: bool = False #: :meta private:
"""Flag to check if prompt payload has been sent."""
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
prompt_time = datetime.datetime.now().isoformat()
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
auth_context = inputs.get(self.auth_context_key, {})
semantic_context = inputs.get(self.semantic_context_key, {})
accepts_run_manager = (
"run_manager" in inspect.signature(self._get_docs).parameters
)
if accepts_run_manager:
docs = self._get_docs(
question, auth_context, semantic_context, run_manager=_run_manager
)
else:
docs = self._get_docs(question, auth_context, semantic_context) # type: ignore[call-arg]
answer = self.combine_documents_chain.run(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
qa = {
"name": self.app_name,
"context": [
{
"retrieved_from": doc.metadata.get("source"),
"doc": doc.page_content,
"vector_db": self.retriever.vectorstore.__class__.__name__,
}
for doc in docs
if isinstance(doc, Document)
],
"prompt": {"data": question},
"response": {
"data": answer,
},
"prompt_time": prompt_time,
"user": auth_context.user_id if auth_context else "unknown",
"user_identities": auth_context.user_auth
if "user_auth" in dict(auth_context)
else []
if auth_context
else [],
}
qa_payload = Qa(**qa)
self._send_prompt(qa_payload)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Run get_relevant_text and llm on input query.
If chain has 'return_source_documents' as 'True', returns
the retrieved documents as well under the key 'source_documents'.
Example:
.. code-block:: python
res = indexqa({'query': 'This is my query'})
answer, docs = res['result'], res['source_documents']
"""
_run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager()
question = inputs[self.input_key]
auth_context = inputs.get(self.auth_context_key)
semantic_context = inputs.get(self.semantic_context_key)
accepts_run_manager = (
"run_manager" in inspect.signature(self._aget_docs).parameters
)
if accepts_run_manager:
docs = await self._aget_docs(
question, auth_context, semantic_context, run_manager=_run_manager
)
else:
docs = await self._aget_docs(question, auth_context, semantic_context) # type: ignore[call-arg]
answer = await self.combine_documents_chain.arun(
input_documents=docs, question=question, callbacks=_run_manager.get_child()
)
if self.return_source_documents:
return {self.output_key: answer, "source_documents": docs}
else:
return {self.output_key: answer}
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
allow_population_by_field_name = True
@property
def input_keys(self) -> List[str]:
"""Input keys.
:meta private:
"""
return [self.input_key, self.auth_context_key, self.semantic_context_key]
@property
def output_keys(self) -> List[str]:
"""Output keys.
:meta private:
"""
_output_keys = [self.output_key]
if self.return_source_documents:
_output_keys += ["source_documents"]
return _output_keys
@property
def _chain_type(self) -> str:
"""Return the chain type."""
return "pebblo_retrieval_qa"
@classmethod
def from_chain_type(
cls,
llm: BaseLanguageModel,
app_name: str,
description: str,
owner: str,
chain_type: str = "stuff",
chain_type_kwargs: Optional[dict] = None,
api_key: Optional[str] = None,
classifier_url: str = CLASSIFIER_URL,
**kwargs: Any,
) -> "PebbloRetrievalQA":
"""Load chain from chain type."""
from langchain.chains.question_answering import load_qa_chain
_chain_type_kwargs = chain_type_kwargs or {}
combine_documents_chain = load_qa_chain(
llm, chain_type=chain_type, **_chain_type_kwargs
)
# generate app
app = PebbloRetrievalQA._get_app_details(
app_name=app_name,
description=description,
owner=owner,
llm=llm,
**kwargs,
)
PebbloRetrievalQA._send_discover(
app, api_key=api_key, classifier_url=classifier_url
)
return cls(
combine_documents_chain=combine_documents_chain,
app_name=app_name,
owner=owner,
description=description,
api_key=api_key,
classifier_url=classifier_url,
**kwargs,
)
@validator("retriever", pre=True, always=True)
def validate_vectorstore(
cls, retriever: VectorStoreRetriever
) -> VectorStoreRetriever:
"""
Validate that the vectorstore of the retriever is supported vectorstores.
"""
if not any(
isinstance(retriever.vectorstore, supported_class)
for supported_class in SUPPORTED_VECTORSTORES
):
raise ValueError(
f"Vectorstore must be an instance of one of the supported "
f"vectorstores: {SUPPORTED_VECTORSTORES}. "
f"Got {type(retriever.vectorstore).__name__} instead."
)
return retriever
def _get_docs(
self,
question: str,
auth_context: Optional[AuthContext],
semantic_context: Optional[SemanticContext],
*,
run_manager: CallbackManagerForChainRun,
) -> List[Document]:
"""Get docs."""
set_enforcement_filters(self.retriever, auth_context, semantic_context)
return self.retriever.get_relevant_documents(
question, callbacks=run_manager.get_child()
)
async def _aget_docs(
self,
question: str,
auth_context: Optional[AuthContext],
semantic_context: Optional[SemanticContext],
*,
run_manager: AsyncCallbackManagerForChainRun,
) -> List[Document]:
"""Get docs."""
set_enforcement_filters(self.retriever, auth_context, semantic_context)
return await self.retriever.aget_relevant_documents(
question, callbacks=run_manager.get_child()
)
@staticmethod
def _get_app_details(app_name, owner, description, llm, **kwargs) -> App: # type: ignore
"""Fetch app details. Internal method.
Returns:
App: App details.
"""
framework, runtime = get_runtime()
chains = PebbloRetrievalQA.get_chain_details(llm, **kwargs)
app = App(
name=app_name,
owner=owner,
description=description,
runtime=runtime,
framework=framework,
chains=chains,
plugin_version=PLUGIN_VERSION,
)
return app
@staticmethod
def _send_discover(app, api_key, classifier_url) -> None: # type: ignore
"""Send app discovery payload to pebblo-server. Internal method."""
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
}
payload = app.dict(exclude_unset=True)
app_discover_url = f"{classifier_url}{APP_DISCOVER_URL}"
try:
pebblo_resp = requests.post(
app_discover_url, headers=headers, json=payload, timeout=20
)
logger.debug("discover-payload: %s", payload)
logger.debug(
"send_discover[local]: request url %s, body %s len %s\
response status %s body %s",
pebblo_resp.request.url,
str(pebblo_resp.request.body),
str(len(pebblo_resp.request.body if pebblo_resp.request.body else [])),
str(pebblo_resp.status_code),
pebblo_resp.json(),
)
if pebblo_resp.status_code in [HTTPStatus.OK, HTTPStatus.BAD_GATEWAY]:
PebbloRetrievalQA.set_discover_sent()
else:
logger.warning(
f"Received unexpected HTTP response code: {pebblo_resp.status_code}"
)
except requests.exceptions.RequestException:
logger.warning("Unable to reach pebblo server.")
except Exception as e:
logger.warning("An Exception caught in _send_discover: local %s", e)
if api_key:
try:
headers.update({"x-api-key": api_key})
pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{APP_DISCOVER_URL}"
pebblo_cloud_response = requests.post(
pebblo_cloud_url, headers=headers, json=payload, timeout=20
)
logger.debug(
"send_discover[cloud]: request url %s, body %s len %s\
response status %s body %s",
pebblo_cloud_response.request.url,
str(pebblo_cloud_response.request.body),
str(
len(
pebblo_cloud_response.request.body
if pebblo_cloud_response.request.body
else []
)
),
str(pebblo_cloud_response.status_code),
pebblo_cloud_response.json(),
)
except requests.exceptions.RequestException:
logger.warning("Unable to reach Pebblo cloud server.")
except Exception as e:
logger.warning("An Exception caught in _send_discover: cloud %s", e)
@classmethod
def set_discover_sent(cls) -> None:
cls._discover_sent = True
@classmethod
def set_prompt_sent(cls) -> None:
cls._prompt_sent = True
def _send_prompt(self, qa_payload: Qa) -> None:
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
}
app_discover_url = f"{self.classifier_url}{PROMPT_URL}"
try:
pebblo_resp = requests.post(
app_discover_url, headers=headers, json=qa_payload.dict(), timeout=20
)
logger.debug("prompt-payload: %s", qa_payload)
logger.debug(
"send_prompt[local]: request url %s, body %s len %s\
response status %s body %s",
pebblo_resp.request.url,
str(pebblo_resp.request.body),
str(len(pebblo_resp.request.body if pebblo_resp.request.body else [])),
str(pebblo_resp.status_code),
pebblo_resp.json(),
)
if pebblo_resp.status_code in [HTTPStatus.OK, HTTPStatus.BAD_GATEWAY]:
PebbloRetrievalQA.set_prompt_sent()
else:
logger.warning(
f"Received unexpected HTTP response code: {pebblo_resp.status_code}"
)
except requests.exceptions.RequestException:
logger.warning("Unable to reach pebblo server.")
except Exception as e:
logger.warning("An Exception caught in _send_discover: local %s", e)
if self.api_key:
try:
headers.update({"x-api-key": self.api_key})
pebblo_cloud_url = f"{PEBBLO_CLOUD_URL}{PROMPT_URL}"
pebblo_cloud_response = requests.post(
pebblo_cloud_url,
headers=headers,
json=qa_payload.dict(),
timeout=20,
)
logger.debug(
"send_prompt[cloud]: request url %s, body %s len %s\
response status %s body %s",
pebblo_cloud_response.request.url,
str(pebblo_cloud_response.request.body),
str(
len(
pebblo_cloud_response.request.body
if pebblo_cloud_response.request.body
else []
)
),
str(pebblo_cloud_response.status_code),
pebblo_cloud_response.json(),
)
except requests.exceptions.RequestException:
logger.warning("Unable to reach Pebblo cloud server.")
except Exception as e:
logger.warning("An Exception caught in _send_prompt: cloud %s", e)
@classmethod
def get_chain_details(cls, llm, **kwargs): # type: ignore
llm_dict = llm.__dict__
chain = [
{
"name": cls.__name__,
"model": {
"name": llm_dict.get("model_name", llm_dict.get("model")),
"vendor": llm.__class__.__name__,
},
"vector_dbs": [
{
"name": kwargs["retriever"].vectorstore.__class__.__name__,
"embedding_model": str(
kwargs["retriever"].vectorstore._embeddings.model
)
if hasattr(kwargs["retriever"].vectorstore, "_embeddings")
else (
str(kwargs["retriever"].vectorstore._embedding.model)
if hasattr(kwargs["retriever"].vectorstore, "_embedding")
else None
),
}
],
}
]
return chain