langchain/tests/integration_tests/retrievers/test_weaviate_hybrid_search.py
Bill Zhang dda11d2a05
WeaviateHybridSearchRetriever option to enable scores. (#7861)
Description: This PR adds the option to retrieve scores and explanations
in the WeaviateHybridSearchRetriever. This feature improves the
usability of the retriever by allowing users to understand the scoring
logic behind the search results and further refine their search queries.

Issue: This PR is a solution to the issue #7855 
Dependencies: This PR does not introduce any new dependencies.

Tag maintainer: @rlancemartin, @eyurtsev

I have included a unit test for the added feature, ensuring that it
retrieves scores and explanations correctly. I have also included an
example notebook demonstrating its use.
2023-07-18 07:57:17 -07:00

136 lines
4.6 KiB
Python

"""Test Weaviate functionality."""
import logging
import os
import uuid
from typing import Generator, Union
from uuid import uuid4
import pytest
from weaviate import Client
from langchain.docstore.document import Document
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
logging.basicConfig(level=logging.DEBUG)
"""
cd tests/integration_tests/vectorstores/docker-compose
docker compose -f weaviate.yml up
"""
class TestWeaviateHybridSearchRetriever:
@classmethod
def setup_class(cls) -> None:
if not os.getenv("OPENAI_API_KEY"):
raise ValueError("OPENAI_API_KEY environment variable is not set")
@pytest.fixture(scope="class", autouse=True)
def weaviate_url(self) -> Union[str, Generator[str, None, None]]:
"""Return the weaviate url."""
url = "http://localhost:8080"
yield url
# Clear the test index
client = Client(url)
client.schema.delete_all()
@pytest.mark.vcr(ignore_localhost=True)
def test_get_relevant_documents(self, weaviate_url: str) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
client = Client(weaviate_url)
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=f"LangChain_{uuid4().hex}",
text_key="text",
attributes=["page"],
)
for i, text in enumerate(texts):
retriever.add_documents(
[Document(page_content=text, metadata=metadatas[i])]
)
output = retriever.get_relevant_documents("foo")
assert output == [
Document(page_content="foo", metadata={"page": 0}),
Document(page_content="baz", metadata={"page": 2}),
Document(page_content="bar", metadata={"page": 1}),
]
@pytest.mark.vcr(ignore_localhost=True)
def test_get_relevant_documents_with_score(self, weaviate_url: str) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
client = Client(weaviate_url)
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=f"LangChain_{uuid4().hex}",
text_key="text",
attributes=["page"],
)
for i, text in enumerate(texts):
retriever.add_documents(
[Document(page_content=text, metadata=metadatas[i])]
)
output = retriever.get_relevant_documents("foo", score=True)
for doc in output:
assert "_additional" in doc.metadata
@pytest.mark.vcr(ignore_localhost=True)
def test_get_relevant_documents_with_filter(self, weaviate_url: str) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
client = Client(weaviate_url)
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=f"LangChain_{uuid4().hex}",
text_key="text",
attributes=["page"],
)
for i, text in enumerate(texts):
retriever.add_documents(
[Document(page_content=text, metadata=metadatas[i])]
)
where_filter = {"path": ["page"], "operator": "Equal", "valueNumber": 0}
output = retriever.get_relevant_documents("foo", where_filter=where_filter)
assert output == [
Document(page_content="foo", metadata={"page": 0}),
]
@pytest.mark.vcr(ignore_localhost=True)
def test_get_relevant_documents_with_uuids(self, weaviate_url: str) -> None:
"""Test end to end construction and MRR search."""
texts = ["foo", "bar", "baz"]
metadatas = [{"page": i} for i in range(len(texts))]
# Weaviate replaces the object if the UUID already exists
uuids = [uuid.uuid5(uuid.NAMESPACE_DNS, "same-name") for text in texts]
client = Client(weaviate_url)
retriever = WeaviateHybridSearchRetriever(
client=client,
index_name=f"LangChain_{uuid4().hex}",
text_key="text",
attributes=["page"],
)
for i, text in enumerate(texts):
retriever.add_documents(
[Document(page_content=text, metadata=metadatas[i])], uuids=[uuids[i]]
)
output = retriever.get_relevant_documents("foo")
assert len(output) == 1