mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
86ee4f0daa
#### Description This MR defines a `ExperimentalMarkdownSyntaxTextSplitter` class. The main goal is to replicate the functionality of the original `MarkdownHeaderTextSplitter` which extracts the header stack as metadata but with one critical difference: it keeps the whitespace of the original text intact. This draft reimplements the `MarkdownHeaderTextSplitter` with a very different algorithmic approach. Instead of marking up each line of the text individually and aggregating them back together into chunks, this method builds each chunk sequentially and applies the metadata to each chunk. This makes the implementation simpler. However, since it's designed to keep white space intact its not a full drop in replacement for the original. Since it is a radical implementation change to the original code and I would like to get feedback to see if this is a worthwhile replacement, should be it's own class, or is not a good idea at all. Note: I implemented the `return_each_line` parameter but I don't think it's a necessary feature. I'd prefer to remove it. This implementation also adds the following additional features: - Splits out code blocks and includes the language in the `"Code"` metadata key - Splits text on the horizontal rule `---` as well - The `headers_to_split_on` parameter is now optional - with sensible defaults that can be overridden. #### Issue Keeping the whitespace keeps the paragraphs structure and the formatting of the code blocks intact which allows the caller much more flexibility in how they want to further split the individuals sections of the resulting documents. This addresses the issues brought up by the community in the following issues: - https://github.com/langchain-ai/langchain/issues/20823 - https://github.com/langchain-ai/langchain/issues/19436 - https://github.com/langchain-ai/langchain/issues/22256 #### Dependencies N/A #### Twitter handle @RyanElston --------- Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
383 lines
15 KiB
Python
383 lines
15 KiB
Python
from __future__ import annotations
|
|
|
|
import re
|
|
from typing import Any, Dict, List, Tuple, TypedDict, Union
|
|
|
|
from langchain_core.documents import Document
|
|
|
|
from langchain_text_splitters.base import Language
|
|
from langchain_text_splitters.character import RecursiveCharacterTextSplitter
|
|
|
|
|
|
class MarkdownTextSplitter(RecursiveCharacterTextSplitter):
|
|
"""Attempts to split the text along Markdown-formatted headings."""
|
|
|
|
def __init__(self, **kwargs: Any) -> None:
|
|
"""Initialize a MarkdownTextSplitter."""
|
|
separators = self.get_separators_for_language(Language.MARKDOWN)
|
|
super().__init__(separators=separators, **kwargs)
|
|
|
|
|
|
class MarkdownHeaderTextSplitter:
|
|
"""Splitting markdown files based on specified headers."""
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: List[Tuple[str, str]],
|
|
return_each_line: bool = False,
|
|
strip_headers: bool = True,
|
|
):
|
|
"""Create a new MarkdownHeaderTextSplitter.
|
|
|
|
Args:
|
|
headers_to_split_on: Headers we want to track
|
|
return_each_line: Return each line w/ associated headers
|
|
strip_headers: Strip split headers from the content of the chunk
|
|
"""
|
|
# Output line-by-line or aggregated into chunks w/ common headers
|
|
self.return_each_line = return_each_line
|
|
# Given the headers we want to split on,
|
|
# (e.g., "#, ##, etc") order by length
|
|
self.headers_to_split_on = sorted(
|
|
headers_to_split_on, key=lambda split: len(split[0]), reverse=True
|
|
)
|
|
# Strip headers split headers from the content of the chunk
|
|
self.strip_headers = strip_headers
|
|
|
|
def aggregate_lines_to_chunks(self, lines: List[LineType]) -> List[Document]:
|
|
"""Combine lines with common metadata into chunks
|
|
Args:
|
|
lines: Line of text / associated header metadata
|
|
"""
|
|
aggregated_chunks: List[LineType] = []
|
|
|
|
for line in lines:
|
|
if (
|
|
aggregated_chunks
|
|
and aggregated_chunks[-1]["metadata"] == line["metadata"]
|
|
):
|
|
# If the last line in the aggregated list
|
|
# has the same metadata as the current line,
|
|
# append the current content to the last lines's content
|
|
aggregated_chunks[-1]["content"] += " \n" + line["content"]
|
|
elif (
|
|
aggregated_chunks
|
|
and aggregated_chunks[-1]["metadata"] != line["metadata"]
|
|
# may be issues if other metadata is present
|
|
and len(aggregated_chunks[-1]["metadata"]) < len(line["metadata"])
|
|
and aggregated_chunks[-1]["content"].split("\n")[-1][0] == "#"
|
|
and not self.strip_headers
|
|
):
|
|
# If the last line in the aggregated list
|
|
# has different metadata as the current line,
|
|
# and has shallower header level than the current line,
|
|
# and the last line is a header,
|
|
# and we are not stripping headers,
|
|
# append the current content to the last line's content
|
|
aggregated_chunks[-1]["content"] += " \n" + line["content"]
|
|
# and update the last line's metadata
|
|
aggregated_chunks[-1]["metadata"] = line["metadata"]
|
|
else:
|
|
# Otherwise, append the current line to the aggregated list
|
|
aggregated_chunks.append(line)
|
|
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in aggregated_chunks
|
|
]
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
"""Split markdown file
|
|
Args:
|
|
text: Markdown file"""
|
|
|
|
# Split the input text by newline character ("\n").
|
|
lines = text.split("\n")
|
|
# Final output
|
|
lines_with_metadata: List[LineType] = []
|
|
# Content and metadata of the chunk currently being processed
|
|
current_content: List[str] = []
|
|
current_metadata: Dict[str, str] = {}
|
|
# Keep track of the nested header structure
|
|
# header_stack: List[Dict[str, Union[int, str]]] = []
|
|
header_stack: List[HeaderType] = []
|
|
initial_metadata: Dict[str, str] = {}
|
|
|
|
in_code_block = False
|
|
opening_fence = ""
|
|
|
|
for line in lines:
|
|
stripped_line = line.strip()
|
|
# Remove all non-printable characters from the string, keeping only visible
|
|
# text.
|
|
stripped_line = "".join(filter(str.isprintable, stripped_line))
|
|
if not in_code_block:
|
|
# Exclude inline code spans
|
|
if stripped_line.startswith("```") and stripped_line.count("```") == 1:
|
|
in_code_block = True
|
|
opening_fence = "```"
|
|
elif stripped_line.startswith("~~~"):
|
|
in_code_block = True
|
|
opening_fence = "~~~"
|
|
else:
|
|
if stripped_line.startswith(opening_fence):
|
|
in_code_block = False
|
|
opening_fence = ""
|
|
|
|
if in_code_block:
|
|
current_content.append(stripped_line)
|
|
continue
|
|
|
|
# Check each line against each of the header types (e.g., #, ##)
|
|
for sep, name in self.headers_to_split_on:
|
|
# Check if line starts with a header that we intend to split on
|
|
if stripped_line.startswith(sep) and (
|
|
# Header with no text OR header is followed by space
|
|
# Both are valid conditions that sep is being used a header
|
|
len(stripped_line) == len(sep) or stripped_line[len(sep)] == " "
|
|
):
|
|
# Ensure we are tracking the header as metadata
|
|
if name is not None:
|
|
# Get the current header level
|
|
current_header_level = sep.count("#")
|
|
|
|
# Pop out headers of lower or same level from the stack
|
|
while (
|
|
header_stack
|
|
and header_stack[-1]["level"] >= current_header_level
|
|
):
|
|
# We have encountered a new header
|
|
# at the same or higher level
|
|
popped_header = header_stack.pop()
|
|
# Clear the metadata for the
|
|
# popped header in initial_metadata
|
|
if popped_header["name"] in initial_metadata:
|
|
initial_metadata.pop(popped_header["name"])
|
|
|
|
# Push the current header to the stack
|
|
header: HeaderType = {
|
|
"level": current_header_level,
|
|
"name": name,
|
|
"data": stripped_line[len(sep) :].strip(),
|
|
}
|
|
header_stack.append(header)
|
|
# Update initial_metadata with the current header
|
|
initial_metadata[name] = header["data"]
|
|
|
|
# Add the previous line to the lines_with_metadata
|
|
# only if current_content is not empty
|
|
if current_content:
|
|
lines_with_metadata.append(
|
|
{
|
|
"content": "\n".join(current_content),
|
|
"metadata": current_metadata.copy(),
|
|
}
|
|
)
|
|
current_content.clear()
|
|
|
|
if not self.strip_headers:
|
|
current_content.append(stripped_line)
|
|
|
|
break
|
|
else:
|
|
if stripped_line:
|
|
current_content.append(stripped_line)
|
|
elif current_content:
|
|
lines_with_metadata.append(
|
|
{
|
|
"content": "\n".join(current_content),
|
|
"metadata": current_metadata.copy(),
|
|
}
|
|
)
|
|
current_content.clear()
|
|
|
|
current_metadata = initial_metadata.copy()
|
|
|
|
if current_content:
|
|
lines_with_metadata.append(
|
|
{"content": "\n".join(current_content), "metadata": current_metadata}
|
|
)
|
|
|
|
# lines_with_metadata has each line with associated header metadata
|
|
# aggregate these into chunks based on common metadata
|
|
if not self.return_each_line:
|
|
return self.aggregate_lines_to_chunks(lines_with_metadata)
|
|
else:
|
|
return [
|
|
Document(page_content=chunk["content"], metadata=chunk["metadata"])
|
|
for chunk in lines_with_metadata
|
|
]
|
|
|
|
|
|
class LineType(TypedDict):
|
|
"""Line type as typed dict."""
|
|
|
|
metadata: Dict[str, str]
|
|
content: str
|
|
|
|
|
|
class HeaderType(TypedDict):
|
|
"""Header type as typed dict."""
|
|
|
|
level: int
|
|
name: str
|
|
data: str
|
|
|
|
|
|
class ExperimentalMarkdownSyntaxTextSplitter:
|
|
"""
|
|
An experimental text splitter for handling Markdown syntax.
|
|
|
|
This splitter aims to retain the exact whitespace of the original text while
|
|
extracting structured metadata, such as headers. It is a re-implementation of the
|
|
MarkdownHeaderTextSplitter with notable changes to the approach and
|
|
additional features.
|
|
|
|
Key Features:
|
|
- Retains the original whitespace and formatting of the Markdown text.
|
|
- Extracts headers, code blocks, and horizontal rules as metadata.
|
|
- Splits out code blocks and includes the language in the "Code" metadata key.
|
|
- Splits text on horizontal rules (`---`) as well.
|
|
- Defaults to sensible splitting behavior, which can be overridden using the
|
|
`headers_to_split_on` parameter.
|
|
|
|
Parameters:
|
|
----------
|
|
headers_to_split_on : List[Tuple[str, str]], optional
|
|
Headers to split on, defaulting to common Markdown headers if not specified.
|
|
return_each_line : bool, optional
|
|
When set to True, returns each line as a separate chunk. Default is False.
|
|
|
|
Usage example:
|
|
--------------
|
|
>>> headers_to_split_on = [
|
|
>>> ("#", "Header 1"),
|
|
>>> ("##", "Header 2"),
|
|
>>> ]
|
|
>>> splitter = ExperimentalMarkdownSyntaxTextSplitter(
|
|
>>> headers_to_split_on=headers_to_split_on
|
|
>>> )
|
|
>>> chunks = splitter.split(text)
|
|
>>> for chunk in chunks:
|
|
>>> print(chunk)
|
|
|
|
This class is currently experimental and subject to change based on feedback and
|
|
further development.
|
|
"""
|
|
|
|
DEFAULT_HEADER_KEYS = {
|
|
"#": "Header 1",
|
|
"##": "Header 2",
|
|
"###": "Header 3",
|
|
"####": "Header 4",
|
|
"#####": "Header 5",
|
|
"######": "Header 6",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
headers_to_split_on: Union[List[Tuple[str, str]], None] = None,
|
|
return_each_line: bool = False,
|
|
strip_headers: bool = True,
|
|
):
|
|
self.chunks: List[Document] = []
|
|
self.current_chunk = Document(page_content="")
|
|
self.current_header_stack: List[Tuple[int, str]] = []
|
|
self.strip_headers = strip_headers
|
|
if headers_to_split_on:
|
|
self.splittable_headers = dict(headers_to_split_on)
|
|
else:
|
|
self.splittable_headers = self.DEFAULT_HEADER_KEYS
|
|
|
|
self.return_each_line = return_each_line
|
|
|
|
def split_text(self, text: str) -> List[Document]:
|
|
raw_lines = text.splitlines(keepends=True)
|
|
|
|
while raw_lines:
|
|
raw_line = raw_lines.pop(0)
|
|
header_match = self._match_header(raw_line)
|
|
code_match = self._match_code(raw_line)
|
|
horz_match = self._match_horz(raw_line)
|
|
if header_match:
|
|
self._complete_chunk_doc()
|
|
|
|
if not self.strip_headers:
|
|
self.current_chunk.page_content += raw_line
|
|
|
|
# add the header to the stack
|
|
header_depth = len(header_match.group(1))
|
|
header_text = header_match.group(2)
|
|
self._resolve_header_stack(header_depth, header_text)
|
|
elif code_match:
|
|
self._complete_chunk_doc()
|
|
self.current_chunk.page_content = self._resolve_code_chunk(
|
|
raw_line, raw_lines
|
|
)
|
|
self.current_chunk.metadata["Code"] = code_match.group(1)
|
|
self._complete_chunk_doc()
|
|
elif horz_match:
|
|
self._complete_chunk_doc()
|
|
else:
|
|
self.current_chunk.page_content += raw_line
|
|
|
|
self._complete_chunk_doc()
|
|
# I don't see why `return_each_line` is a necessary feature of this splitter.
|
|
# It's easy enough to to do outside of the class and the caller can have more
|
|
# control over it.
|
|
if self.return_each_line:
|
|
return [
|
|
Document(page_content=line, metadata=chunk.metadata)
|
|
for chunk in self.chunks
|
|
for line in chunk.page_content.splitlines()
|
|
if line and not line.isspace()
|
|
]
|
|
return self.chunks
|
|
|
|
def _resolve_header_stack(self, header_depth: int, header_text: str) -> None:
|
|
for i, (depth, _) in enumerate(self.current_header_stack):
|
|
if depth == header_depth:
|
|
self.current_header_stack[i] = (header_depth, header_text)
|
|
self.current_header_stack = self.current_header_stack[: i + 1]
|
|
return
|
|
self.current_header_stack.append((header_depth, header_text))
|
|
|
|
def _resolve_code_chunk(self, current_line: str, raw_lines: List[str]) -> str:
|
|
chunk = current_line
|
|
while raw_lines:
|
|
raw_line = raw_lines.pop(0)
|
|
chunk += raw_line
|
|
if self._match_code(raw_line):
|
|
return chunk
|
|
return ""
|
|
|
|
def _complete_chunk_doc(self) -> None:
|
|
chunk_content = self.current_chunk.page_content
|
|
# Discard any empty documents
|
|
if chunk_content and not chunk_content.isspace():
|
|
# Apply the header stack as metadata
|
|
for depth, value in self.current_header_stack:
|
|
header_key = self.splittable_headers.get("#" * depth)
|
|
self.current_chunk.metadata[header_key] = value
|
|
self.chunks.append(self.current_chunk)
|
|
# Reset the current chunk
|
|
self.current_chunk = Document(page_content="")
|
|
|
|
# Match methods
|
|
def _match_header(self, line: str) -> Union[re.Match, None]:
|
|
match = re.match(r"^(#{1,6}) (.*)", line)
|
|
# Only matches on the configured headers
|
|
if match and match.group(1) in self.splittable_headers:
|
|
return match
|
|
return None
|
|
|
|
def _match_code(self, line: str) -> Union[re.Match, None]:
|
|
matches = [re.match(rule, line) for rule in [r"^```(.*)", r"^~~~(.*)"]]
|
|
return next((match for match in matches if match), None)
|
|
|
|
def _match_horz(self, line: str) -> Union[re.Match, None]:
|
|
matches = [
|
|
re.match(rule, line) for rule in [r"^\*\*\*+\n", r"^---+\n", r"^___+\n"]
|
|
]
|
|
return next((match for match in matches if match), None)
|