mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
f9aea3db07
Description: add lint docstrings for chroma module Issue: the issue #23188 @baskaryan test: ruff check passed. ![image](https://github.com/langchain-ai/langchain/assets/76683249/5e168a0c-32d0-464f-8ddb-110233918019) --------- Co-authored-by: gongwn1 <gongwn1@lenovo.com>
942 lines
35 KiB
Python
942 lines
35 KiB
Python
"""This is the langchain_chroma.vectorstores module.
|
|
|
|
It contains the Chroma class which is a vector store for handling various tasks.
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import base64
|
|
import logging
|
|
import uuid
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Iterable,
|
|
List,
|
|
Optional,
|
|
Tuple,
|
|
Type,
|
|
Union,
|
|
)
|
|
|
|
import chromadb
|
|
import chromadb.config
|
|
import numpy as np
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.utils import xor_args
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
if TYPE_CHECKING:
|
|
from chromadb.api.types import ID, OneOrMany, Where, WhereDocument
|
|
|
|
logger = logging.getLogger()
|
|
DEFAULT_K = 4 # Number of Documents to return.
|
|
|
|
|
|
def _results_to_docs(results: Any) -> List[Document]:
|
|
return [doc for doc, _ in _results_to_docs_and_scores(results)]
|
|
|
|
|
|
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
|
|
return [
|
|
# TODO: Chroma can do batch querying,
|
|
# we shouldn't hard code to the 1st result
|
|
(Document(page_content=result[0], metadata=result[1] or {}), result[2])
|
|
for result in zip(
|
|
results["documents"][0],
|
|
results["metadatas"][0],
|
|
results["distances"][0],
|
|
)
|
|
]
|
|
|
|
|
|
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray]
|
|
|
|
|
|
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
|
|
"""Row-wise cosine similarity between two equal-width matrices.
|
|
|
|
Raises:
|
|
ValueError: If the number of columns in X and Y are not the same.
|
|
"""
|
|
if len(X) == 0 or len(Y) == 0:
|
|
return np.array([])
|
|
|
|
X = np.array(X)
|
|
Y = np.array(Y)
|
|
if X.shape[1] != Y.shape[1]:
|
|
raise ValueError(
|
|
"Number of columns in X and Y must be the same. X has shape"
|
|
f"{X.shape} "
|
|
f"and Y has shape {Y.shape}."
|
|
)
|
|
|
|
X_norm = np.linalg.norm(X, axis=1)
|
|
Y_norm = np.linalg.norm(Y, axis=1)
|
|
# Ignore divide by zero errors run time warnings as those are handled below.
|
|
with np.errstate(divide="ignore", invalid="ignore"):
|
|
similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
|
|
similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
|
|
return similarity
|
|
|
|
|
|
def maximal_marginal_relevance(
|
|
query_embedding: np.ndarray,
|
|
embedding_list: list,
|
|
lambda_mult: float = 0.5,
|
|
k: int = 4,
|
|
) -> List[int]:
|
|
"""Calculate maximal marginal relevance.
|
|
|
|
Args:
|
|
query_embedding: Query embedding.
|
|
embedding_list: List of embeddings to select from.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
|
|
Returns:
|
|
List of indices of embeddings selected by maximal marginal relevance.
|
|
"""
|
|
if min(k, len(embedding_list)) <= 0:
|
|
return []
|
|
if query_embedding.ndim == 1:
|
|
query_embedding = np.expand_dims(query_embedding, axis=0)
|
|
similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]
|
|
most_similar = int(np.argmax(similarity_to_query))
|
|
idxs = [most_similar]
|
|
selected = np.array([embedding_list[most_similar]])
|
|
while len(idxs) < min(k, len(embedding_list)):
|
|
best_score = -np.inf
|
|
idx_to_add = -1
|
|
similarity_to_selected = cosine_similarity(embedding_list, selected)
|
|
for i, query_score in enumerate(similarity_to_query):
|
|
if i in idxs:
|
|
continue
|
|
redundant_score = max(similarity_to_selected[i])
|
|
equation_score = (
|
|
lambda_mult * query_score - (1 - lambda_mult) * redundant_score
|
|
)
|
|
if equation_score > best_score:
|
|
best_score = equation_score
|
|
idx_to_add = i
|
|
idxs.append(idx_to_add)
|
|
selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
|
|
return idxs
|
|
|
|
|
|
class Chroma(VectorStore):
|
|
"""`ChromaDB` vector store.
|
|
|
|
To use, you should have the ``chromadb`` python package installed.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_chroma import Chroma
|
|
from langchain_openai import OpenAIEmbeddings
|
|
|
|
embeddings = OpenAIEmbeddings()
|
|
vectorstore = Chroma("langchain_store", embeddings)
|
|
"""
|
|
|
|
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
|
|
|
def __init__(
|
|
self,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
embedding_function: Optional[Embeddings] = None,
|
|
persist_directory: Optional[str] = None,
|
|
client_settings: Optional[chromadb.config.Settings] = None,
|
|
collection_metadata: Optional[Dict] = None,
|
|
client: Optional[chromadb.ClientAPI] = None,
|
|
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
|
create_collection_if_not_exists: Optional[bool] = True,
|
|
) -> None:
|
|
"""Initialize with a Chroma client.
|
|
|
|
Args:
|
|
collection_name: Name of the collection to create.
|
|
embedding_function: Embedding class object. Used to embed texts.
|
|
persist_directory: Directory to persist the collection.
|
|
client_settings: Chroma client settings
|
|
collection_metadata: Collection configurations.
|
|
client: Chroma client. Documentation:
|
|
https://docs.trychroma.com/reference/js-client#class:-chromaclient
|
|
relevance_score_fn: Function to calculate relevance score from distance.
|
|
Used only in `similarity_search_with_relevance_scores`
|
|
create_collection_if_not_exists: Whether to create collection
|
|
if it doesn't exist. Defaults to True.
|
|
"""
|
|
if client is not None:
|
|
self._client_settings = client_settings
|
|
self._client = client
|
|
self._persist_directory = persist_directory
|
|
else:
|
|
if client_settings:
|
|
# If client_settings is provided with persist_directory specified,
|
|
# then it is "in-memory and persisting to disk" mode.
|
|
client_settings.persist_directory = (
|
|
persist_directory or client_settings.persist_directory
|
|
)
|
|
|
|
_client_settings = client_settings
|
|
elif persist_directory:
|
|
_client_settings = chromadb.config.Settings(is_persistent=True)
|
|
_client_settings.persist_directory = persist_directory
|
|
else:
|
|
_client_settings = chromadb.config.Settings()
|
|
self._client_settings = _client_settings
|
|
self._client = chromadb.Client(_client_settings)
|
|
self._persist_directory = (
|
|
_client_settings.persist_directory or persist_directory
|
|
)
|
|
|
|
self._embedding_function = embedding_function
|
|
self._chroma_collection: Optional[chromadb.Collection] = None
|
|
self._collection_name = collection_name
|
|
self._collection_metadata = collection_metadata
|
|
if create_collection_if_not_exists:
|
|
self.__ensure_collection()
|
|
else:
|
|
self._chroma_collection = self._client.get_collection(name=collection_name)
|
|
self.override_relevance_score_fn = relevance_score_fn
|
|
|
|
def __ensure_collection(self) -> None:
|
|
"""Ensure that the collection exists or create it."""
|
|
self._chroma_collection = self._client.get_or_create_collection(
|
|
name=self._collection_name,
|
|
embedding_function=None,
|
|
metadata=self._collection_metadata,
|
|
)
|
|
|
|
@property
|
|
def _collection(self) -> chromadb.Collection:
|
|
"""Returns the underlying Chroma collection or throws an exception."""
|
|
if self._chroma_collection is None:
|
|
raise ValueError(
|
|
"Chroma collection not initialized. "
|
|
"Use `reset_collection` to re-create and initialize the collection. "
|
|
)
|
|
return self._chroma_collection
|
|
|
|
@property
|
|
def embeddings(self) -> Optional[Embeddings]:
|
|
"""Access the query embedding object."""
|
|
return self._embedding_function
|
|
|
|
@xor_args(("query_texts", "query_embeddings"))
|
|
def __query_collection(
|
|
self,
|
|
query_texts: Optional[List[str]] = None,
|
|
query_embeddings: Optional[List[List[float]]] = None,
|
|
n_results: int = 4,
|
|
where: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> Union[List[Document], chromadb.QueryResult]:
|
|
"""Query the chroma collection.
|
|
|
|
Args:
|
|
query_texts: List of query texts.
|
|
query_embeddings: List of query embeddings.
|
|
n_results: Number of results to return. Defaults to 4.
|
|
where: dict used to filter results by
|
|
e.g. {"color" : "red", "price": 4.20}.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of `n_results` nearest neighbor embeddings for provided
|
|
query_embeddings or query_texts.
|
|
|
|
See more: https://docs.trychroma.com/reference/py-collection#query
|
|
"""
|
|
return self._collection.query(
|
|
query_texts=query_texts,
|
|
query_embeddings=query_embeddings, # type: ignore
|
|
n_results=n_results,
|
|
where=where, # type: ignore
|
|
where_document=where_document, # type: ignore
|
|
**kwargs,
|
|
)
|
|
|
|
def encode_image(self, uri: str) -> str:
|
|
"""Get base64 string from image URI."""
|
|
with open(uri, "rb") as image_file:
|
|
return base64.b64encode(image_file.read()).decode("utf-8")
|
|
|
|
def add_images(
|
|
self,
|
|
uris: List[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more images through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
uris: File path to the image.
|
|
metadatas: Optional list of metadatas.
|
|
When querying, you can filter on this metadata.
|
|
ids: Optional list of IDs.
|
|
**kwargs: Additional keyword arguments to pass.
|
|
|
|
Returns:
|
|
List of IDs of the added images.
|
|
|
|
Raises:
|
|
ValueError: When metadata is incorrect.
|
|
"""
|
|
# Map from uris to b64 encoded strings
|
|
b64_texts = [self.encode_image(uri=uri) for uri in uris]
|
|
# Populate IDs
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in uris]
|
|
embeddings = None
|
|
# Set embeddings
|
|
if self._embedding_function is not None and hasattr(
|
|
self._embedding_function, "embed_image"
|
|
):
|
|
embeddings = self._embedding_function.embed_image(uris=uris)
|
|
if metadatas:
|
|
# fill metadatas with empty dicts if somebody
|
|
# did not specify metadata for all images
|
|
length_diff = len(uris) - len(metadatas)
|
|
if length_diff:
|
|
metadatas = metadatas + [{}] * length_diff
|
|
empty_ids = []
|
|
non_empty_ids = []
|
|
for idx, m in enumerate(metadatas):
|
|
if m:
|
|
non_empty_ids.append(idx)
|
|
else:
|
|
empty_ids.append(idx)
|
|
if non_empty_ids:
|
|
metadatas = [metadatas[idx] for idx in non_empty_ids]
|
|
images_with_metadatas = [b64_texts[idx] for idx in non_empty_ids]
|
|
embeddings_with_metadatas = (
|
|
[embeddings[idx] for idx in non_empty_ids] if embeddings else None
|
|
)
|
|
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
|
|
try:
|
|
self._collection.upsert(
|
|
metadatas=metadatas, # type: ignore
|
|
embeddings=embeddings_with_metadatas, # type: ignore
|
|
documents=images_with_metadatas,
|
|
ids=ids_with_metadata,
|
|
)
|
|
except ValueError as e:
|
|
if "Expected metadata value to be" in str(e):
|
|
msg = (
|
|
"Try filtering complex metadata using "
|
|
"langchain_community.vectorstores.utils.filter_complex_metadata."
|
|
)
|
|
raise ValueError(e.args[0] + "\n\n" + msg)
|
|
else:
|
|
raise e
|
|
if empty_ids:
|
|
images_without_metadatas = [b64_texts[j] for j in empty_ids]
|
|
embeddings_without_metadatas = (
|
|
[embeddings[j] for j in empty_ids] if embeddings else None
|
|
)
|
|
ids_without_metadatas = [ids[j] for j in empty_ids]
|
|
self._collection.upsert(
|
|
embeddings=embeddings_without_metadatas,
|
|
documents=images_without_metadatas,
|
|
ids=ids_without_metadatas,
|
|
)
|
|
else:
|
|
self._collection.upsert(
|
|
embeddings=embeddings,
|
|
documents=b64_texts,
|
|
ids=ids,
|
|
)
|
|
return ids
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts: Texts to add to the vectorstore.
|
|
metadatas: Optional list of metadatas.
|
|
When querying, you can filter on this metadata.
|
|
ids: Optional list of IDs.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
List of IDs of the added texts.
|
|
|
|
Raises:
|
|
ValueError: When metadata is incorrect.
|
|
"""
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
embeddings = None
|
|
texts = list(texts)
|
|
if self._embedding_function is not None:
|
|
embeddings = self._embedding_function.embed_documents(texts)
|
|
if metadatas:
|
|
# fill metadatas with empty dicts if somebody
|
|
# did not specify metadata for all texts
|
|
length_diff = len(texts) - len(metadatas)
|
|
if length_diff:
|
|
metadatas = metadatas + [{}] * length_diff
|
|
empty_ids = []
|
|
non_empty_ids = []
|
|
for idx, m in enumerate(metadatas):
|
|
if m:
|
|
non_empty_ids.append(idx)
|
|
else:
|
|
empty_ids.append(idx)
|
|
if non_empty_ids:
|
|
metadatas = [metadatas[idx] for idx in non_empty_ids]
|
|
texts_with_metadatas = [texts[idx] for idx in non_empty_ids]
|
|
embeddings_with_metadatas = (
|
|
[embeddings[idx] for idx in non_empty_ids] if embeddings else None
|
|
)
|
|
ids_with_metadata = [ids[idx] for idx in non_empty_ids]
|
|
try:
|
|
self._collection.upsert(
|
|
metadatas=metadatas, # type: ignore
|
|
embeddings=embeddings_with_metadatas, # type: ignore
|
|
documents=texts_with_metadatas,
|
|
ids=ids_with_metadata,
|
|
)
|
|
except ValueError as e:
|
|
if "Expected metadata value to be" in str(e):
|
|
msg = (
|
|
"Try filtering complex metadata from the document using "
|
|
"langchain_community.vectorstores.utils.filter_complex_metadata."
|
|
)
|
|
raise ValueError(e.args[0] + "\n\n" + msg)
|
|
else:
|
|
raise e
|
|
if empty_ids:
|
|
texts_without_metadatas = [texts[j] for j in empty_ids]
|
|
embeddings_without_metadatas = (
|
|
[embeddings[j] for j in empty_ids] if embeddings else None
|
|
)
|
|
ids_without_metadatas = [ids[j] for j in empty_ids]
|
|
self._collection.upsert(
|
|
embeddings=embeddings_without_metadatas, # type: ignore
|
|
documents=texts_without_metadatas,
|
|
ids=ids_without_metadatas,
|
|
)
|
|
else:
|
|
self._collection.upsert(
|
|
embeddings=embeddings, # type: ignore
|
|
documents=texts,
|
|
ids=ids,
|
|
)
|
|
return ids
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search with Chroma.
|
|
|
|
Args:
|
|
query: Query text to search for.
|
|
k: Number of results to return. Defaults to 4.
|
|
filter: Filter by metadata. Defaults to None.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of documents most similar to the query text.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query, k, filter=filter, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
def similarity_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs most similar to embedding vector.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter: Filter by metadata. Defaults to None.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of Documents most similar to the query vector.
|
|
"""
|
|
results = self.__query_collection(
|
|
query_embeddings=embedding,
|
|
n_results=k,
|
|
where=filter,
|
|
where_document=where_document,
|
|
**kwargs,
|
|
)
|
|
return _results_to_docs(results)
|
|
|
|
def similarity_search_by_vector_with_relevance_scores(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return docs most similar to embedding vector and similarity score.
|
|
|
|
Args:
|
|
embedding (List[float]): Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
filter: Filter by metadata. Defaults to None.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of documents most similar to the query text and relevance score
|
|
in float for each. Lower score represents more similarity.
|
|
"""
|
|
results = self.__query_collection(
|
|
query_embeddings=embedding,
|
|
n_results=k,
|
|
where=filter,
|
|
where_document=where_document,
|
|
**kwargs,
|
|
)
|
|
return _results_to_docs_and_scores(results)
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Run similarity search with Chroma with distance.
|
|
|
|
Args:
|
|
query: Query text to search for.
|
|
k: Number of results to return. Defaults to 4.
|
|
filter: Filter by metadata. Defaults to None.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of documents most similar to the query text and
|
|
distance in float for each. Lower score represents more similarity.
|
|
"""
|
|
if self._embedding_function is None:
|
|
results = self.__query_collection(
|
|
query_texts=[query],
|
|
n_results=k,
|
|
where=filter,
|
|
where_document=where_document,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
query_embedding = self._embedding_function.embed_query(query)
|
|
results = self.__query_collection(
|
|
query_embeddings=[query_embedding],
|
|
n_results=k,
|
|
where=filter,
|
|
where_document=where_document,
|
|
**kwargs,
|
|
)
|
|
|
|
return _results_to_docs_and_scores(results)
|
|
|
|
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
|
"""Select the relevance score function based on collections distance metric.
|
|
|
|
The most similar documents will have the lowest relevance score. Default
|
|
relevance score function is euclidean distance. Distance metric must be
|
|
provided in `collection_metadata` during initizalition of Chroma object.
|
|
Example: collection_metadata={"hnsw:space": "cosine"}. Available distance
|
|
metrics are: 'cosine', 'l2' and 'ip'.
|
|
|
|
Returns:
|
|
The relevance score function.
|
|
|
|
Raises:
|
|
ValueError: If the distance metric is not supported.
|
|
"""
|
|
if self.override_relevance_score_fn:
|
|
return self.override_relevance_score_fn
|
|
|
|
distance = "l2"
|
|
distance_key = "hnsw:space"
|
|
metadata = self._collection.metadata
|
|
|
|
if metadata and distance_key in metadata:
|
|
distance = metadata[distance_key]
|
|
|
|
if distance == "cosine":
|
|
return self._cosine_relevance_score_fn
|
|
elif distance == "l2":
|
|
return self._euclidean_relevance_score_fn
|
|
elif distance == "ip":
|
|
return self._max_inner_product_relevance_score_fn
|
|
else:
|
|
raise ValueError(
|
|
"No supported normalization function"
|
|
f" for distance metric of type: {distance}."
|
|
"Consider providing relevance_score_fn to Chroma constructor."
|
|
)
|
|
|
|
def max_marginal_relevance_search_by_vector(
|
|
self,
|
|
embedding: List[float],
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
embedding: Embedding to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm. Defaults to
|
|
20.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter: Filter by metadata. Defaults to None.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
"""
|
|
results = self.__query_collection(
|
|
query_embeddings=embedding,
|
|
n_results=fetch_k,
|
|
where=filter,
|
|
where_document=where_document,
|
|
include=["metadatas", "documents", "distances", "embeddings"],
|
|
**kwargs,
|
|
)
|
|
mmr_selected = maximal_marginal_relevance(
|
|
np.array(embedding, dtype=np.float32),
|
|
results["embeddings"][0],
|
|
k=k,
|
|
lambda_mult=lambda_mult,
|
|
)
|
|
|
|
candidates = _results_to_docs(results)
|
|
|
|
selected_results = [r for i, r in enumerate(candidates) if i in mmr_selected]
|
|
return selected_results
|
|
|
|
def max_marginal_relevance_search(
|
|
self,
|
|
query: str,
|
|
k: int = DEFAULT_K,
|
|
fetch_k: int = 20,
|
|
lambda_mult: float = 0.5,
|
|
filter: Optional[Dict[str, str]] = None,
|
|
where_document: Optional[Dict[str, str]] = None,
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Return docs selected using the maximal marginal relevance.
|
|
|
|
Maximal marginal relevance optimizes for similarity to query AND diversity
|
|
among selected documents.
|
|
|
|
Args:
|
|
query: Text to look up documents similar to.
|
|
k: Number of Documents to return. Defaults to 4.
|
|
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
|
lambda_mult: Number between 0 and 1 that determines the degree
|
|
of diversity among the results with 0 corresponding
|
|
to maximum diversity and 1 to minimum diversity.
|
|
Defaults to 0.5.
|
|
filter: Filter by metadata. Defaults to None.
|
|
where_document: dict used to filter by the documents.
|
|
E.g. {$contains: {"text": "hello"}}.
|
|
**kwargs: Additional keyword arguments to pass to Chroma collection query.
|
|
|
|
Returns:
|
|
List of Documents selected by maximal marginal relevance.
|
|
|
|
Raises:
|
|
ValueError: If the embedding function is not provided.
|
|
"""
|
|
if self._embedding_function is None:
|
|
raise ValueError(
|
|
"For MMR search, you must specify an embedding function on" "creation."
|
|
)
|
|
|
|
embedding = self._embedding_function.embed_query(query)
|
|
return self.max_marginal_relevance_search_by_vector(
|
|
embedding,
|
|
k,
|
|
fetch_k,
|
|
lambda_mult=lambda_mult,
|
|
filter=filter,
|
|
where_document=where_document,
|
|
)
|
|
|
|
def delete_collection(self) -> None:
|
|
"""Delete the collection."""
|
|
self._client.delete_collection(self._collection.name)
|
|
self._chroma_collection = None
|
|
|
|
def reset_collection(self) -> None:
|
|
"""Resets the collection.
|
|
|
|
Resets the collection by deleting the collection and recreating an empty one.
|
|
"""
|
|
self.delete_collection()
|
|
self.__ensure_collection()
|
|
|
|
def get(
|
|
self,
|
|
ids: Optional[OneOrMany[ID]] = None,
|
|
where: Optional[Where] = None,
|
|
limit: Optional[int] = None,
|
|
offset: Optional[int] = None,
|
|
where_document: Optional[WhereDocument] = None,
|
|
include: Optional[List[str]] = None,
|
|
) -> Dict[str, Any]:
|
|
"""Gets the collection.
|
|
|
|
Args:
|
|
ids: The ids of the embeddings to get. Optional.
|
|
where: A Where type dict used to filter results by.
|
|
E.g. `{"color" : "red", "price": 4.20}`. Optional.
|
|
limit: The number of documents to return. Optional.
|
|
offset: The offset to start returning results from.
|
|
Useful for paging results with limit. Optional.
|
|
where_document: A WhereDocument type dict used to filter by the documents.
|
|
E.g. `{$contains: "hello"}`. Optional.
|
|
include: A list of what to include in the results.
|
|
Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
|
|
Ids are always included.
|
|
Defaults to `["metadatas", "documents"]`. Optional.
|
|
|
|
Return:
|
|
A dict with the keys `"ids"`, `"embeddings"`, `"metadatas"`, `"documents"`.
|
|
"""
|
|
kwargs = {
|
|
"ids": ids,
|
|
"where": where,
|
|
"limit": limit,
|
|
"offset": offset,
|
|
"where_document": where_document,
|
|
}
|
|
|
|
if include is not None:
|
|
kwargs["include"] = include
|
|
|
|
return self._collection.get(**kwargs) # type: ignore
|
|
|
|
def update_document(self, document_id: str, document: Document) -> None:
|
|
"""Update a document in the collection.
|
|
|
|
Args:
|
|
document_id: ID of the document to update.
|
|
document: Document to update.
|
|
"""
|
|
return self.update_documents([document_id], [document])
|
|
|
|
# type: ignore
|
|
def update_documents(self, ids: List[str], documents: List[Document]) -> None:
|
|
"""Update a document in the collection.
|
|
|
|
Args:
|
|
ids: List of ids of the document to update.
|
|
documents: List of documents to update.
|
|
|
|
Raises:
|
|
ValueError: If the embedding function is not provided.
|
|
"""
|
|
text = [document.page_content for document in documents]
|
|
metadata = [document.metadata for document in documents]
|
|
if self._embedding_function is None:
|
|
raise ValueError(
|
|
"For update, you must specify an embedding function on creation."
|
|
)
|
|
embeddings = self._embedding_function.embed_documents(text)
|
|
|
|
if hasattr(
|
|
self._collection._client, "max_batch_size"
|
|
): # for Chroma 0.4.10 and above
|
|
from chromadb.utils.batch_utils import create_batches
|
|
|
|
for batch in create_batches(
|
|
api=self._collection._client,
|
|
ids=ids,
|
|
metadatas=metadata, # type: ignore
|
|
documents=text,
|
|
embeddings=embeddings, # type: ignore
|
|
):
|
|
self._collection.update(
|
|
ids=batch[0],
|
|
embeddings=batch[1],
|
|
documents=batch[3],
|
|
metadatas=batch[2],
|
|
)
|
|
else:
|
|
self._collection.update(
|
|
ids=ids,
|
|
embeddings=embeddings, # type: ignore
|
|
documents=text,
|
|
metadatas=metadata, # type: ignore
|
|
)
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Type[Chroma],
|
|
texts: List[str],
|
|
embedding: Optional[Embeddings] = None,
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
persist_directory: Optional[str] = None,
|
|
client_settings: Optional[chromadb.config.Settings] = None,
|
|
client: Optional[chromadb.ClientAPI] = None,
|
|
collection_metadata: Optional[Dict] = None,
|
|
**kwargs: Any,
|
|
) -> Chroma:
|
|
"""Create a Chroma vectorstore from a raw documents.
|
|
|
|
If a persist_directory is specified, the collection will be persisted there.
|
|
Otherwise, the data will be ephemeral in-memory.
|
|
|
|
Args:
|
|
texts: List of texts to add to the collection.
|
|
collection_name: Name of the collection to create.
|
|
persist_directory: Directory to persist the collection.
|
|
embedding: Embedding function. Defaults to None.
|
|
metadatas: List of metadatas. Defaults to None.
|
|
ids: List of document IDs. Defaults to None.
|
|
client_settings: Chroma client settings.
|
|
client: Chroma client. Documentation:
|
|
https://docs.trychroma.com/reference/js-client#class:-chromaclient
|
|
collection_metadata: Collection configurations.
|
|
Defaults to None.
|
|
**kwargs: Additional keyword arguments to initialize a Chroma client.
|
|
|
|
Returns:
|
|
Chroma: Chroma vectorstore.
|
|
"""
|
|
chroma_collection = cls(
|
|
collection_name=collection_name,
|
|
embedding_function=embedding,
|
|
persist_directory=persist_directory,
|
|
client_settings=client_settings,
|
|
client=client,
|
|
collection_metadata=collection_metadata,
|
|
**kwargs,
|
|
)
|
|
if ids is None:
|
|
ids = [str(uuid.uuid4()) for _ in texts]
|
|
if hasattr(
|
|
chroma_collection._client, "max_batch_size"
|
|
): # for Chroma 0.4.10 and above
|
|
from chromadb.utils.batch_utils import create_batches
|
|
|
|
for batch in create_batches(
|
|
api=chroma_collection._client,
|
|
ids=ids,
|
|
metadatas=metadatas, # type: ignore
|
|
documents=texts,
|
|
):
|
|
chroma_collection.add_texts(
|
|
texts=batch[3] if batch[3] else [],
|
|
metadatas=batch[2] if batch[2] else None, # type: ignore
|
|
ids=batch[0],
|
|
)
|
|
else:
|
|
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids)
|
|
return chroma_collection
|
|
|
|
@classmethod
|
|
def from_documents(
|
|
cls: Type[Chroma],
|
|
documents: List[Document],
|
|
embedding: Optional[Embeddings] = None,
|
|
ids: Optional[List[str]] = None,
|
|
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
|
persist_directory: Optional[str] = None,
|
|
client_settings: Optional[chromadb.config.Settings] = None,
|
|
client: Optional[chromadb.ClientAPI] = None, # Add this line
|
|
collection_metadata: Optional[Dict] = None,
|
|
**kwargs: Any,
|
|
) -> Chroma:
|
|
"""Create a Chroma vectorstore from a list of documents.
|
|
|
|
If a persist_directory is specified, the collection will be persisted there.
|
|
Otherwise, the data will be ephemeral in-memory.
|
|
|
|
Args:
|
|
collection_name: Name of the collection to create.
|
|
persist_directory: Directory to persist the collection.
|
|
ids : List of document IDs. Defaults to None.
|
|
documents: List of documents to add to the vectorstore.
|
|
embedding: Embedding function. Defaults to None.
|
|
client_settings: Chroma client settings.
|
|
client: Chroma client. Documentation:
|
|
https://docs.trychroma.com/reference/js-client#class:-chromaclient
|
|
collection_metadata: Collection configurations.
|
|
Defaults to None.
|
|
**kwargs: Additional keyword arguments to initialize a Chroma client.
|
|
|
|
Returns:
|
|
Chroma: Chroma vectorstore.
|
|
"""
|
|
texts = [doc.page_content for doc in documents]
|
|
metadatas = [doc.metadata for doc in documents]
|
|
return cls.from_texts(
|
|
texts=texts,
|
|
embedding=embedding,
|
|
metadatas=metadatas,
|
|
ids=ids,
|
|
collection_name=collection_name,
|
|
persist_directory=persist_directory,
|
|
client_settings=client_settings,
|
|
client=client,
|
|
collection_metadata=collection_metadata,
|
|
**kwargs,
|
|
)
|
|
|
|
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None:
|
|
"""Delete by vector IDs.
|
|
|
|
Args:
|
|
ids: List of ids to delete.
|
|
**kwargs: Additional keyword arguments.
|
|
"""
|
|
self._collection.delete(ids=ids)
|