mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
a70b7a688e
Added missed docstrings. Format docstrings to the consistent format (used in the API Reference)
175 lines
5.1 KiB
Python
175 lines
5.1 KiB
Python
import asyncio
|
|
from functools import partial
|
|
from typing import (
|
|
Any,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
)
|
|
|
|
from ai21.models import CompletionsResponse
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models import BaseLLM
|
|
from langchain_core.outputs import Generation, LLMResult
|
|
|
|
from langchain_ai21.ai21_base import AI21Base
|
|
|
|
|
|
class AI21LLM(BaseLLM, AI21Base):
|
|
"""AI21 large language models.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_ai21 import AI21LLM
|
|
|
|
model = AI21LLM()
|
|
"""
|
|
|
|
model: str
|
|
"""Model type you wish to interact with.
|
|
You can view the options at https://github.com/AI21Labs/ai21-python?tab=readme-ov-file#model-types"""
|
|
|
|
num_results: int = 1
|
|
"""The number of responses to generate for a given prompt."""
|
|
|
|
max_tokens: int = 16
|
|
"""The maximum number of tokens to generate for each response."""
|
|
|
|
min_tokens: int = 0
|
|
"""The minimum number of tokens to generate for each response."""
|
|
|
|
temperature: float = 0.7
|
|
"""A value controlling the "creativity" of the model's responses."""
|
|
|
|
top_p: float = 1
|
|
"""A value controlling the diversity of the model's responses."""
|
|
|
|
top_k_return: int = 0
|
|
"""The number of top-scoring tokens to consider for each generation step."""
|
|
|
|
frequency_penalty: Optional[Any] = None
|
|
"""A penalty applied to tokens that are frequently generated."""
|
|
|
|
presence_penalty: Optional[Any] = None
|
|
""" A penalty applied to tokens that are already present in the prompt."""
|
|
|
|
count_penalty: Optional[Any] = None
|
|
"""A penalty applied to tokens based on their frequency
|
|
in the generated responses."""
|
|
|
|
custom_model: Optional[str] = None
|
|
epoch: Optional[int] = None
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
allow_population_by_field_name = True
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
"""Return type of LLM."""
|
|
return "ai21-llm"
|
|
|
|
@property
|
|
def _default_params(self) -> Mapping[str, Any]:
|
|
base_params = {
|
|
"model": self.model,
|
|
"num_results": self.num_results,
|
|
"max_tokens": self.max_tokens,
|
|
"min_tokens": self.min_tokens,
|
|
"temperature": self.temperature,
|
|
"top_p": self.top_p,
|
|
"top_k_return": self.top_k_return,
|
|
}
|
|
|
|
if self.count_penalty is not None:
|
|
base_params["count_penalty"] = self.count_penalty.to_dict()
|
|
|
|
if self.custom_model is not None:
|
|
base_params["custom_model"] = self.custom_model
|
|
|
|
if self.epoch is not None:
|
|
base_params["epoch"] = self.epoch
|
|
|
|
if self.frequency_penalty is not None:
|
|
base_params["frequency_penalty"] = self.frequency_penalty.to_dict()
|
|
|
|
if self.presence_penalty is not None:
|
|
base_params["presence_penalty"] = self.presence_penalty.to_dict()
|
|
|
|
return base_params
|
|
|
|
def _build_params_for_request(
|
|
self, stop: Optional[List[str]] = None, **kwargs: Any
|
|
) -> Mapping[str, Any]:
|
|
params = {}
|
|
|
|
if stop is not None:
|
|
if "stop" in kwargs:
|
|
raise ValueError("stop is defined in both stop and kwargs")
|
|
params["stop_sequences"] = stop
|
|
|
|
return {
|
|
**self._default_params,
|
|
**params,
|
|
**kwargs,
|
|
}
|
|
|
|
def _generate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
generations: List[List[Generation]] = []
|
|
token_count = 0
|
|
|
|
params = self._build_params_for_request(stop=stop, **kwargs)
|
|
|
|
for prompt in prompts:
|
|
response = self._invoke_completion(prompt=prompt, **params)
|
|
generation = self._response_to_generation(response)
|
|
generations.append(generation)
|
|
token_count += self.client.count_tokens(prompt)
|
|
|
|
llm_output = {"token_count": token_count, "model_name": self.model}
|
|
return LLMResult(generations=generations, llm_output=llm_output)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
prompts: List[str],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> LLMResult:
|
|
# Change implementation if integration natively supports async generation.
|
|
return await asyncio.get_running_loop().run_in_executor(
|
|
None, partial(self._generate, **kwargs), prompts, stop, run_manager
|
|
)
|
|
|
|
def _invoke_completion(
|
|
self,
|
|
prompt: str,
|
|
**kwargs: Any,
|
|
) -> CompletionsResponse:
|
|
return self.client.completion.create(
|
|
prompt=prompt,
|
|
**kwargs,
|
|
)
|
|
|
|
def _response_to_generation(
|
|
self, response: CompletionsResponse
|
|
) -> List[Generation]:
|
|
return [
|
|
Generation(
|
|
text=completion.data.text,
|
|
generation_info=completion.to_dict(),
|
|
)
|
|
for completion in response.completions
|
|
]
|