mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
481d3855dc
- `llm(prompt)` -> `llm.invoke(prompt)` - `llm(prompt=prompt` -> `llm.invoke(prompt)` (same with `messages=`) - `llm(prompt, callbacks=callbacks)` -> `llm.invoke(prompt, config={"callbacks": callbacks})` - `llm(prompt, **kwargs)` -> `llm.invoke(prompt, **kwargs)`
152 lines
4.8 KiB
Python
152 lines
4.8 KiB
Python
import json
|
|
import logging
|
|
from typing import Any, List, Optional, Union
|
|
|
|
from langchain_core.callbacks import CallbackManagerForLLMRun
|
|
from langchain_core.language_models.llms import LLM
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
FunctionMessage,
|
|
HumanMessage,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.pydantic_v1 import Field
|
|
|
|
from langchain_community.llms.utils import enforce_stop_tokens
|
|
|
|
logger = logging.getLogger(__name__)
|
|
HEADERS = {"Content-Type": "application/json"}
|
|
DEFAULT_TIMEOUT = 30
|
|
|
|
|
|
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
|
if isinstance(message, HumanMessage):
|
|
message_dict = {"role": "user", "content": message.content}
|
|
elif isinstance(message, AIMessage):
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
elif isinstance(message, SystemMessage):
|
|
message_dict = {"role": "system", "content": message.content}
|
|
elif isinstance(message, FunctionMessage):
|
|
message_dict = {"role": "function", "content": message.content}
|
|
else:
|
|
raise ValueError(f"Got unknown type {message}")
|
|
return message_dict
|
|
|
|
|
|
class ChatGLM3(LLM):
|
|
"""ChatGLM3 LLM service."""
|
|
|
|
model_name: str = Field(default="chatglm3-6b", alias="model")
|
|
endpoint_url: str = "http://127.0.0.1:8000/v1/chat/completions"
|
|
"""Endpoint URL to use."""
|
|
model_kwargs: Optional[dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
max_tokens: int = 20000
|
|
"""Max token allowed to pass to the model."""
|
|
temperature: float = 0.1
|
|
"""LLM model temperature from 0 to 10."""
|
|
top_p: float = 0.7
|
|
"""Top P for nucleus sampling from 0 to 1"""
|
|
prefix_messages: List[BaseMessage] = Field(default_factory=list)
|
|
"""Series of messages for Chat input."""
|
|
streaming: bool = False
|
|
"""Whether to stream the results or not."""
|
|
http_client: Union[Any, None] = None
|
|
timeout: int = DEFAULT_TIMEOUT
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "chat_glm_3"
|
|
|
|
@property
|
|
def _invocation_params(self) -> dict:
|
|
"""Get the parameters used to invoke the model."""
|
|
params = {
|
|
"model": self.model_name,
|
|
"temperature": self.temperature,
|
|
"max_tokens": self.max_tokens,
|
|
"top_p": self.top_p,
|
|
"stream": self.streaming,
|
|
}
|
|
return {**params, **(self.model_kwargs or {})}
|
|
|
|
@property
|
|
def client(self) -> Any:
|
|
import httpx
|
|
|
|
return self.http_client or httpx.Client(timeout=self.timeout)
|
|
|
|
def _get_payload(self, prompt: str) -> dict:
|
|
params = self._invocation_params
|
|
messages = self.prefix_messages + [HumanMessage(content=prompt)]
|
|
params.update(
|
|
{
|
|
"messages": [_convert_message_to_dict(m) for m in messages],
|
|
}
|
|
)
|
|
return params
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
"""Call out to a ChatGLM3 LLM inference endpoint.
|
|
|
|
Args:
|
|
prompt: The prompt to pass into the model.
|
|
stop: Optional list of stop words to use when generating.
|
|
|
|
Returns:
|
|
The string generated by the model.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
response = chatglm_llm.invoke("Who are you?")
|
|
"""
|
|
import httpx
|
|
|
|
payload = self._get_payload(prompt)
|
|
logger.debug(f"ChatGLM3 payload: {payload}")
|
|
|
|
try:
|
|
response = self.client.post(
|
|
self.endpoint_url, headers=HEADERS, json=payload
|
|
)
|
|
except httpx.NetworkError as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
logger.debug(f"ChatGLM3 response: {response}")
|
|
|
|
if response.status_code != 200:
|
|
raise ValueError(f"Failed with response: {response}")
|
|
|
|
try:
|
|
parsed_response = response.json()
|
|
|
|
if isinstance(parsed_response, dict):
|
|
content_keys = "choices"
|
|
if content_keys in parsed_response:
|
|
choices = parsed_response[content_keys]
|
|
if len(choices):
|
|
text = choices[0]["message"]["content"]
|
|
else:
|
|
raise ValueError(f"No content in response : {parsed_response}")
|
|
else:
|
|
raise ValueError(f"Unexpected response type: {parsed_response}")
|
|
|
|
except json.JSONDecodeError as e:
|
|
raise ValueError(
|
|
f"Error raised during decoding response from inference endpoint: {e}."
|
|
f"\nResponse: {response.text}"
|
|
)
|
|
|
|
if stop is not None:
|
|
text = enforce_stop_tokens(text, stop)
|
|
|
|
return text
|