mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
25fbe356b4
This PR upgrades community to a recent version of mypy. It inserts type: ignore on all existing failures.
274 lines
9.5 KiB
Python
274 lines
9.5 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
AsyncIterator,
|
|
Dict,
|
|
Iterator,
|
|
List,
|
|
Mapping,
|
|
Optional,
|
|
Type,
|
|
)
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain_core.language_models.chat_models import (
|
|
BaseChatModel,
|
|
agenerate_from_stream,
|
|
generate_from_stream,
|
|
)
|
|
from langchain_core.messages import (
|
|
AIMessage,
|
|
AIMessageChunk,
|
|
BaseMessage,
|
|
BaseMessageChunk,
|
|
ChatMessage,
|
|
ChatMessageChunk,
|
|
FunctionMessage,
|
|
FunctionMessageChunk,
|
|
HumanMessage,
|
|
HumanMessageChunk,
|
|
SystemMessage,
|
|
SystemMessageChunk,
|
|
)
|
|
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
|
|
|
from langchain_community.llms.gigachat import _BaseGigaChat
|
|
|
|
if TYPE_CHECKING:
|
|
import gigachat.models as gm
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _convert_dict_to_message(message: gm.Messages) -> BaseMessage:
|
|
from gigachat.models import FunctionCall, MessagesRole
|
|
|
|
additional_kwargs: Dict = {}
|
|
if function_call := message.function_call:
|
|
if isinstance(function_call, FunctionCall):
|
|
additional_kwargs["function_call"] = dict(function_call)
|
|
elif isinstance(function_call, dict):
|
|
additional_kwargs["function_call"] = function_call
|
|
|
|
if message.role == MessagesRole.SYSTEM:
|
|
return SystemMessage(content=message.content)
|
|
elif message.role == MessagesRole.USER:
|
|
return HumanMessage(content=message.content)
|
|
elif message.role == MessagesRole.ASSISTANT:
|
|
return AIMessage(content=message.content, additional_kwargs=additional_kwargs)
|
|
else:
|
|
raise TypeError(f"Got unknown role {message.role} {message}")
|
|
|
|
|
|
def _convert_message_to_dict(message: gm.BaseMessage) -> gm.Messages:
|
|
from gigachat.models import Messages, MessagesRole
|
|
|
|
if isinstance(message, SystemMessage):
|
|
return Messages(role=MessagesRole.SYSTEM, content=message.content)
|
|
elif isinstance(message, HumanMessage):
|
|
return Messages(role=MessagesRole.USER, content=message.content)
|
|
elif isinstance(message, AIMessage):
|
|
return Messages(
|
|
role=MessagesRole.ASSISTANT,
|
|
content=message.content,
|
|
function_call=message.additional_kwargs.get("function_call", None),
|
|
)
|
|
elif isinstance(message, ChatMessage):
|
|
return Messages(role=MessagesRole(message.role), content=message.content)
|
|
elif isinstance(message, FunctionMessage):
|
|
return Messages(role=MessagesRole.FUNCTION, content=message.content)
|
|
else:
|
|
raise TypeError(f"Got unknown type {message}")
|
|
|
|
|
|
def _convert_delta_to_message_chunk(
|
|
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
|
) -> BaseMessageChunk:
|
|
role = _dict.get("role")
|
|
content = _dict.get("content") or ""
|
|
additional_kwargs: Dict = {}
|
|
if _dict.get("function_call"):
|
|
function_call = dict(_dict["function_call"])
|
|
if "name" in function_call and function_call["name"] is None:
|
|
function_call["name"] = ""
|
|
additional_kwargs["function_call"] = function_call
|
|
|
|
if role == "user" or default_class == HumanMessageChunk:
|
|
return HumanMessageChunk(content=content)
|
|
elif role == "assistant" or default_class == AIMessageChunk:
|
|
return AIMessageChunk(content=content, additional_kwargs=additional_kwargs)
|
|
elif role == "system" or default_class == SystemMessageChunk:
|
|
return SystemMessageChunk(content=content)
|
|
elif role == "function" or default_class == FunctionMessageChunk:
|
|
return FunctionMessageChunk(content=content, name=_dict["name"])
|
|
elif role or default_class == ChatMessageChunk:
|
|
return ChatMessageChunk(content=content, role=role) # type: ignore[arg-type]
|
|
else:
|
|
return default_class(content=content) # type: ignore[call-arg]
|
|
|
|
|
|
class GigaChat(_BaseGigaChat, BaseChatModel):
|
|
"""`GigaChat` large language models API.
|
|
|
|
To use, you should pass login and password to access GigaChat API or use token.
|
|
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
from langchain_community.chat_models import GigaChat
|
|
giga = GigaChat(credentials=..., scope=..., verify_ssl_certs=False)
|
|
"""
|
|
|
|
def _build_payload(self, messages: List[BaseMessage], **kwargs: Any) -> gm.Chat:
|
|
from gigachat.models import Chat
|
|
|
|
payload = Chat(
|
|
messages=[_convert_message_to_dict(m) for m in messages],
|
|
)
|
|
|
|
payload.functions = kwargs.get("functions", None)
|
|
payload.model = self.model
|
|
|
|
if self.profanity_check is not None:
|
|
payload.profanity_check = self.profanity_check
|
|
if self.temperature is not None:
|
|
payload.temperature = self.temperature
|
|
if self.top_p is not None:
|
|
payload.top_p = self.top_p
|
|
if self.max_tokens is not None:
|
|
payload.max_tokens = self.max_tokens
|
|
if self.repetition_penalty is not None:
|
|
payload.repetition_penalty = self.repetition_penalty
|
|
if self.update_interval is not None:
|
|
payload.update_interval = self.update_interval
|
|
|
|
if self.verbose:
|
|
logger.warning("Giga request: %s", payload.dict())
|
|
|
|
return payload
|
|
|
|
def _create_chat_result(self, response: Any) -> ChatResult:
|
|
generations = []
|
|
for res in response.choices:
|
|
message = _convert_dict_to_message(res.message)
|
|
finish_reason = res.finish_reason
|
|
gen = ChatGeneration(
|
|
message=message,
|
|
generation_info={"finish_reason": finish_reason},
|
|
)
|
|
generations.append(gen)
|
|
if finish_reason != "stop":
|
|
logger.warning(
|
|
"Giga generation stopped with reason: %s",
|
|
finish_reason,
|
|
)
|
|
if self.verbose:
|
|
logger.warning("Giga response: %s", message.content)
|
|
llm_output = {"token_usage": response.usage, "model_name": response.model}
|
|
return ChatResult(generations=generations, llm_output=llm_output)
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._stream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return generate_from_stream(stream_iter)
|
|
|
|
payload = self._build_payload(messages, **kwargs)
|
|
response = self._client.chat(payload)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
stream: Optional[bool] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
should_stream = stream if stream is not None else self.streaming
|
|
if should_stream:
|
|
stream_iter = self._astream(
|
|
messages, stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return await agenerate_from_stream(stream_iter)
|
|
|
|
payload = self._build_payload(messages, **kwargs)
|
|
response = await self._client.achat(payload)
|
|
|
|
return self._create_chat_result(response)
|
|
|
|
def _stream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> Iterator[ChatGenerationChunk]:
|
|
payload = self._build_payload(messages, **kwargs)
|
|
|
|
for chunk in self._client.stream(payload):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.dict()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
content = choice.get("delta", {}).get("content", {})
|
|
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
)
|
|
|
|
if run_manager:
|
|
run_manager.on_llm_new_token(content)
|
|
|
|
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
|
|
async def _astream(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> AsyncIterator[ChatGenerationChunk]:
|
|
payload = self._build_payload(messages, **kwargs)
|
|
|
|
async for chunk in self._client.astream(payload):
|
|
if not isinstance(chunk, dict):
|
|
chunk = chunk.dict()
|
|
if len(chunk["choices"]) == 0:
|
|
continue
|
|
|
|
choice = chunk["choices"][0]
|
|
content = choice.get("delta", {}).get("content", {})
|
|
chunk = _convert_delta_to_message_chunk(choice["delta"], AIMessageChunk)
|
|
|
|
finish_reason = choice.get("finish_reason")
|
|
|
|
generation_info = (
|
|
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
|
)
|
|
|
|
yield ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
|
if run_manager:
|
|
await run_manager.on_llm_new_token(content)
|