langchain/docs/modules/chains/combine_docs_how_to.rst
Harrison Chase 985496f4be
Docs refactor (#480)
Big docs refactor! Motivation is to make it easier for people to find
resources they are looking for. To accomplish this, there are now three
main sections:

- Getting Started: steps for getting started, walking through most core
functionality
- Modules: these are different modules of functionality that langchain
provides. Each part here has a "getting started", "how to", "key
concepts" and "reference" section (except in a few select cases where it
didnt easily fit).
- Use Cases: this is to separate use cases (like summarization, question
answering, evaluation, etc) from the modules, and provide a different
entry point to the code base.

There is also a full reference section, as well as extra resources
(glossary, gallery, etc)

Co-authored-by: Shreya Rajpal <ShreyaR@users.noreply.github.com>
2023-01-02 08:24:09 -08:00

27 lines
1.3 KiB
ReStructuredText

CombineDocuments Chains
-----------------------
A chain is made up of links, which can be either primitives or other chains.
Primitives can be either `prompts <../prompts.html>`_, `llms <../llms.html>`_, `utils <../utils.html>`_, or other chains.
The examples here are all end-to-end chains for working with documents.
`Question Answering <combine_docs_examples/question_answering.html>`_: A walkthrough of how to use LangChain for question answering over specific documents.
`Question Answering with Sources <combine_docs_examples/qa_with_sources.html>`_: A walkthrough of how to use LangChain for question answering (with sources) over specific documents.
`Summarization <combine_docs_examples/summarize.html>`_: A walkthrough of how to use LangChain for summarization over specific documents.
`Vector DB Question Answering <combine_docs_examples/vector_db_qa.html>`_: A walkthrough of how to use LangChain for question answering over a vector database.
`Vector DB Question Answering with Sources <combine_docs_examples/vector_db_qa_with_sources.html>`_: A walkthrough of how to use LangChain for question answering (with sources) over a vector database.
.. toctree::
:maxdepth: 1
:glob:
:caption: CombineDocument Chains
:name: combine_docs
:hidden:
combine_docs_examples/*