langchain/docs/extras/modules/memory/adding_memory.ipynb
seamusp abd8681341
docs: chains & memory fixes (#9895)
Various improvements to the Chains & Memory sections of the
documentation including formatting, spelling, and grammar fixes to
improve readability.
2023-09-03 15:06:20 -07:00

333 lines
9.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "00695447",
"metadata": {
"tags": []
},
"source": [
"# Memory in LLMChain\n",
"\n",
"This notebook goes over how to use the Memory class with an `LLMChain`. \n",
"\n",
"We will add the [ConversationBufferMemory](https://api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html#langchain.memory.buffer.ConversationBufferMemory) class, although this can be any memory class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9f1aaf47",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chains import LLMChain\n",
"from langchain.llms import OpenAI\n",
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import PromptTemplate"
]
},
{
"cell_type": "markdown",
"id": "4b066ced",
"metadata": {},
"source": [
"The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the `PromptTemplate` and the `ConversationBufferMemory` match up (`chat_history`)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "e5501eda",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"template = \"\"\"You are a chatbot having a conversation with a human.\n",
"\n",
"{chat_history}\n",
"Human: {human_input}\n",
"Chatbot:\"\"\"\n",
"\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"chat_history\", \"human_input\"], template=template\n",
")\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "f6566275",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm = OpenAI()\n",
"llm_chain = LLMChain(\n",
" llm=llm,\n",
" prompt=prompt,\n",
" verbose=True,\n",
" memory=memory,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e2b189dc",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
"\n",
"\n",
"Human: Hi there my friend\n",
"Chatbot:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' Hi there! How can I help you today?'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain.predict(human_input=\"Hi there my friend\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a902729f",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
"\n",
"Human: Hi there my friend\n",
"AI: Hi there! How can I help you today?\n",
"Human: Not too bad - how are you?\n",
"Chatbot:\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\" I'm doing great, thanks for asking! How are you doing?\""
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain.predict(human_input=\"Not too bad - how are you?\")"
]
},
{
"cell_type": "markdown",
"id": "33978824-0048-4e75-9431-1b2c02c169b0",
"metadata": {},
"source": [
"## Adding Memory to a chat model-based `LLMChain`\n",
"\n",
"The above works for completion-style `LLM`s, but if you are using a chat model, you will likely get better performance using structured chat messages. Below is an example."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ae5309bb",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema import SystemMessage\n",
"from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder"
]
},
{
"cell_type": "markdown",
"id": "a237bbb8-e448-4238-8420-004e046ef84e",
"metadata": {},
"source": [
"We will use the [ChatPromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html) class to set up the chat prompt.\n",
"\n",
"The [from_messages](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html#langchain.prompts.chat.ChatPromptTemplate.from_messages) method creates a `ChatPromptTemplate` from a list of messages (e.g., `SystemMessage`, `HumanMessage`, `AIMessage`, `ChatMessage`, etc.) or message templates, such as the [MessagesPlaceholder](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.MessagesPlaceholder.html#langchain.prompts.chat.MessagesPlaceholder) below.\n",
"\n",
"The configuration below makes it so the memory will be injected to the middle of the chat prompt, in the `chat_history` key, and the user's inputs will be added in a human/user message to the end of the chat prompt."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "9bb8cde1-67c2-4133-b453-5c34fb36ff74",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"prompt = ChatPromptTemplate.from_messages([\n",
" SystemMessage(content=\"You are a chatbot having a conversation with a human.\"), # The persistent system prompt\n",
" MessagesPlaceholder(variable_name=\"chat_history\"), # Where the memory will be stored.\n",
" HumanMessagePromptTemplate.from_template(\"{human_input}\"), # Where the human input will injected\n",
"])\n",
" \n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9f77e466-a1a3-4c69-a001-ac5b7a40e219",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"llm = ChatOpenAI()\n",
"\n",
"chat_llm_chain = LLMChain(\n",
" llm=llm,\n",
" prompt=prompt,\n",
" verbose=True,\n",
" memory=memory,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "f9709647-be82-43d5-b076-2a7da344ce8a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n",
"Human: Hi there my friend\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"'Hello! How can I assist you today, my friend?'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_llm_chain.predict(human_input=\"Hi there my friend\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "bdf04ebe-525a-4156-a3a7-65fd2df8d6fc",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n",
"Human: Hi there my friend\n",
"AI: Hello! How can I assist you today, my friend?\n",
"Human: Not too bad - how are you?\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\"I'm an AI chatbot, so I don't have feelings, but I'm here to help and chat with you! Is there something specific you would like to talk about or any questions I can assist you with?\""
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chat_llm_chain.predict(human_input=\"Not too bad - how are you?\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}