mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
abd8681341
Various improvements to the Chains & Memory sections of the documentation including formatting, spelling, and grammar fixes to improve readability.
333 lines
9.1 KiB
Plaintext
333 lines
9.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "00695447",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"# Memory in LLMChain\n",
|
|
"\n",
|
|
|
|
"This notebook goes over how to use the Memory class with an `LLMChain`. \n",
|
|
"\n",
|
|
"We will add the [ConversationBufferMemory](https://api.python.langchain.com/en/latest/memory/langchain.memory.buffer.ConversationBufferMemory.html#langchain.memory.buffer.ConversationBufferMemory) class, although this can be any memory class."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "9f1aaf47",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.llms import OpenAI\n",
|
|
"from langchain.memory import ConversationBufferMemory\n",
|
|
"from langchain.prompts import PromptTemplate"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "4b066ced",
|
|
"metadata": {},
|
|
"source": [
|
|
"The most important step is setting up the prompt correctly. In the below prompt, we have two input keys: one for the actual input, another for the input from the Memory class. Importantly, we make sure the keys in the `PromptTemplate` and the `ConversationBufferMemory` match up (`chat_history`)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "e5501eda",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"template = \"\"\"You are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"{chat_history}\n",
|
|
"Human: {human_input}\n",
|
|
"Chatbot:\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" input_variables=[\"chat_history\", \"human_input\"], template=template\n",
|
|
")\n",
|
|
"memory = ConversationBufferMemory(memory_key=\"chat_history\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "f6566275",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = OpenAI()\n",
|
|
"llm_chain = LLMChain(\n",
|
|
" llm=llm,\n",
|
|
" prompt=prompt,\n",
|
|
" verbose=True,\n",
|
|
" memory=memory,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "e2b189dc",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"\n",
|
|
"Human: Hi there my friend\n",
|
|
"Chatbot:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' Hi there! How can I help you today?'"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.predict(human_input=\"Hi there my friend\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "a902729f",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"Human: Hi there my friend\n",
|
|
"AI: Hi there! How can I help you today?\n",
|
|
"Human: Not too bad - how are you?\n",
|
|
"Chatbot:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\" I'm doing great, thanks for asking! How are you doing?\""
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.predict(human_input=\"Not too bad - how are you?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "33978824-0048-4e75-9431-1b2c02c169b0",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Adding Memory to a chat model-based `LLMChain`\n",
|
|
"\n",
|
|
"The above works for completion-style `LLM`s, but if you are using a chat model, you will likely get better performance using structured chat messages. Below is an example."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "ae5309bb",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.chat_models import ChatOpenAI\n",
|
|
"from langchain.schema import SystemMessage\n",
|
|
"from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a237bbb8-e448-4238-8420-004e046ef84e",
|
|
"metadata": {},
|
|
"source": [
|
|
"We will use the [ChatPromptTemplate](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html) class to set up the chat prompt.\n",
|
|
"\n",
|
|
"The [from_messages](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.ChatPromptTemplate.html#langchain.prompts.chat.ChatPromptTemplate.from_messages) method creates a `ChatPromptTemplate` from a list of messages (e.g., `SystemMessage`, `HumanMessage`, `AIMessage`, `ChatMessage`, etc.) or message templates, such as the [MessagesPlaceholder](https://api.python.langchain.com/en/latest/prompts/langchain.prompts.chat.MessagesPlaceholder.html#langchain.prompts.chat.MessagesPlaceholder) below.\n",
|
|
"\n",
|
|
"The configuration below makes it so the memory will be injected to the middle of the chat prompt, in the `chat_history` key, and the user's inputs will be added in a human/user message to the end of the chat prompt."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "9bb8cde1-67c2-4133-b453-5c34fb36ff74",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"prompt = ChatPromptTemplate.from_messages([\n",
|
|
" SystemMessage(content=\"You are a chatbot having a conversation with a human.\"), # The persistent system prompt\n",
|
|
" MessagesPlaceholder(variable_name=\"chat_history\"), # Where the memory will be stored.\n",
|
|
" HumanMessagePromptTemplate.from_template(\"{human_input}\"), # Where the human input will injected\n",
|
|
"])\n",
|
|
" \n",
|
|
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "9f77e466-a1a3-4c69-a001-ac5b7a40e219",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = ChatOpenAI()\n",
|
|
"\n",
|
|
"chat_llm_chain = LLMChain(\n",
|
|
" llm=llm,\n",
|
|
" prompt=prompt,\n",
|
|
" verbose=True,\n",
|
|
" memory=memory,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "f9709647-be82-43d5-b076-2a7da344ce8a",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n",
|
|
"Human: Hi there my friend\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Hello! How can I assist you today, my friend?'"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chat_llm_chain.predict(human_input=\"Hi there my friend\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "bdf04ebe-525a-4156-a3a7-65fd2df8d6fc",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mSystem: You are a chatbot having a conversation with a human.\n",
|
|
"Human: Hi there my friend\n",
|
|
"AI: Hello! How can I assist you today, my friend?\n",
|
|
"Human: Not too bad - how are you?\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\"I'm an AI chatbot, so I don't have feelings, but I'm here to help and chat with you! Is there something specific you would like to talk about or any questions I can assist you with?\""
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"chat_llm_chain.predict(human_input=\"Not too bad - how are you?\")"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|