langchain/templates/retrieval-agent-fireworks/retrieval_agent_fireworks/chain.py
Erick Friis 1183769cf7
template: tool-retrieval-fireworks (#17052)
- Initial commit oss-tool-retrieval-agent
- README update
- lint
- lock
- format imports
- Rename to retrieval-agent-fireworks
- cr

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2024-02-05 11:50:17 -08:00

110 lines
3.3 KiB
Python

from typing import List
from langchain import hub
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain.callbacks.manager import CallbackManagerForRetrieverRun
from langchain.schema import BaseRetriever, Document
from langchain.tools.render import render_text_description
from langchain.tools.retriever import create_retriever_tool
from langchain_community.chat_models.fireworks import ChatFireworks
from langchain_community.utilities.arxiv import ArxivAPIWrapper
from langchain_core.pydantic_v1 import BaseModel
MODEL_ID = "accounts/fireworks/models/mixtral-8x7b-instruct"
class ArxivRetriever(BaseRetriever, ArxivAPIWrapper):
"""`Arxiv` retriever.
It wraps load() to get_relevant_documents().
It uses all ArxivAPIWrapper arguments without any change.
"""
get_full_documents: bool = False
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
try:
if self.is_arxiv_identifier(query):
results = self.arxiv_search(
id_list=query.split(),
max_results=self.top_k_results,
).results()
else:
results = self.arxiv_search( # type: ignore
query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results
).results()
except self.arxiv_exceptions as ex:
return [Document(page_content=f"Arxiv exception: {ex}")]
docs = [
Document(
page_content=result.summary,
metadata={
"Published": result.updated.date(),
"Title": result.title,
"Authors": ", ".join(a.name for a in result.authors),
},
)
for result in results
]
return docs
# Set up tool(s)
description = (
"A wrapper around Arxiv.org "
"Useful for when you need to answer questions about Physics, Mathematics, "
"Computer Science, Quantitative Biology, Quantitative Finance, Statistics, "
"Electrical Engineering, and Economics "
"from scientific articles on arxiv.org. "
"Input should be a search query."
)
arxiv_tool = create_retriever_tool(ArxivRetriever(), "arxiv", description)
tools = [arxiv_tool]
# Set up LLM
llm = ChatFireworks(
model=MODEL_ID,
model_kwargs={
"temperature": 0,
"max_tokens": 2048,
"top_p": 1,
},
cache=True,
)
# setup ReAct style prompt
prompt = hub.pull("hwchase17/react-json")
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
model_with_stop = llm.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
| prompt
| model_with_stop
| ReActJsonSingleInputOutputParser()
)
class InputType(BaseModel):
input: str
# instantiate AgentExecutor
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
handle_parsing_errors=True,
).with_types(input_type=InputType)