langchain/libs/partners/openai/langchain_openai/embeddings/azure.py
kkdamowang 6782dac420
docs: remove duplicate quote in AzureOpenAIEmbeddings doc (#18315)
- **Description:** Remove duplicate quote in AzureOpenAIEmbeddings doc,
remove trailing spaces.
- **Issue:** No
- **Dependencies:** No
2024-02-29 11:25:50 -08:00

151 lines
6.2 KiB
Python

"""Azure OpenAI embeddings wrapper."""
from __future__ import annotations
import os
from typing import Callable, Dict, Optional, Union
import openai
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from langchain_openai.embeddings.base import OpenAIEmbeddings
class AzureOpenAIEmbeddings(OpenAIEmbeddings):
"""`Azure OpenAI` Embeddings API.
To use, you should have the
environment variable ``AZURE_OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_openai import AzureOpenAIEmbeddings
openai = AzureOpenAIEmbeddings(model="text-embedding-3-large")
"""
azure_endpoint: Union[str, None] = None
"""Your Azure endpoint, including the resource.
Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided.
Example: `https://example-resource.azure.openai.com/`
"""
deployment: Optional[str] = Field(default=None, alias="azure_deployment")
"""A model deployment.
If given sets the base client URL to include `/deployments/{azure_deployment}`.
Note: this means you won't be able to use non-deployment endpoints.
"""
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided."""
azure_ad_token: Optional[SecretStr] = None
"""Your Azure Active Directory token.
Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided.
For more:
https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id.
""" # noqa: E501
azure_ad_token_provider: Union[Callable[[], str], None] = None
"""A function that returns an Azure Active Directory token.
Will be invoked on every request.
"""
openai_api_version: Optional[str] = Field(default=None, alias="api_version")
"""Automatically inferred from env var `OPENAI_API_VERSION` if not provided."""
validate_base_url: bool = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
# Check OPENAI_KEY for backwards compatibility.
# TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using
# other forms of azure credentials.
openai_api_key = (
values["openai_api_key"]
or os.getenv("AZURE_OPENAI_API_KEY")
or os.getenv("OPENAI_API_KEY")
)
values["openai_api_key"] = (
convert_to_secret_str(openai_api_key) if openai_api_key else None
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
"OPENAI_API_BASE"
)
values["openai_api_version"] = values["openai_api_version"] or os.getenv(
"OPENAI_API_VERSION", default="2023-05-15"
)
values["openai_api_type"] = get_from_dict_or_env(
values, "openai_api_type", "OPENAI_API_TYPE", default="azure"
)
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["azure_endpoint"] = values["azure_endpoint"] or os.getenv(
"AZURE_OPENAI_ENDPOINT"
)
azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN")
values["azure_ad_token"] = (
convert_to_secret_str(azure_ad_token) if azure_ad_token else None
)
# Azure OpenAI embedding models allow a maximum of 16 texts
# at a time in each batch
# See: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#embeddings
values["chunk_size"] = min(values["chunk_size"], 16)
# For backwards compatibility. Before openai v1, no distinction was made
# between azure_endpoint and base_url (openai_api_base).
openai_api_base = values["openai_api_base"]
if openai_api_base and values["validate_base_url"]:
if "/openai" not in openai_api_base:
values["openai_api_base"] += "/openai"
raise ValueError(
"As of openai>=1.0.0, Azure endpoints should be specified via "
"the `azure_endpoint` param not `openai_api_base` "
"(or alias `base_url`). "
)
if values["deployment"]:
raise ValueError(
"As of openai>=1.0.0, if `deployment` (or alias "
"`azure_deployment`) is specified then "
"`openai_api_base` (or alias `base_url`) should not be. "
"Instead use `deployment` (or alias `azure_deployment`) "
"and `azure_endpoint`."
)
client_params = {
"api_version": values["openai_api_version"],
"azure_endpoint": values["azure_endpoint"],
"azure_deployment": values["deployment"],
"api_key": values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
else None,
"azure_ad_token": values["azure_ad_token"].get_secret_value()
if values["azure_ad_token"]
else None,
"azure_ad_token_provider": values["azure_ad_token_provider"],
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
"http_client": values["http_client"],
}
values["client"] = openai.AzureOpenAI(**client_params).embeddings
values["async_client"] = openai.AsyncAzureOpenAI(**client_params).embeddings
return values
@property
def _llm_type(self) -> str:
return "azure-openai-chat"