langchain/libs/partners/google-genai/langchain_google_genai/embeddings.py
William FH 1e21a3f7ed
[Partner] Gemini Embeddings (#14690)
Add support for Gemini embeddings in the langchain-google-genai package
2023-12-13 17:05:31 -08:00

100 lines
3.4 KiB
Python

from typing import Dict, List, Optional
# TODO: remove ignore once the google package is published with types
import google.generativeai as genai # type: ignore[import]
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.utils import get_from_dict_or_env
from langchain_google_genai._common import GoogleGenerativeAIError
class GoogleGenerativeAIEmbeddings(BaseModel, Embeddings):
"""`Google Generative AI Embeddings`.
To use, you must have either:
1. The ``GOOGLE_API_KEY``` environment variable set with your API key, or
2. Pass your API key using the google_api_key kwarg to the ChatGoogle
constructor.
Example:
.. code-block:: python
from langchain_google_genai import GoogleGenerativeAIEmbeddings
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
embeddings.embed_query("What's our Q1 revenue?")
"""
model: str = Field(
...,
description="The name of the embedding model to use. "
"Example: models/embedding-001",
)
task_type: Optional[str] = Field(
None,
description="The task type. Valid options include: "
"task_type_unspecified, retrieval_query, retrieval_document, "
"semantic_similarity, classification, and clustering",
)
google_api_key: Optional[SecretStr] = Field(
None,
description="The Google API key to use. If not provided, "
"the GOOGLE_API_KEY environment variable will be used.",
)
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validates that the python package exists in environment."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
return values
def _embed(
self, texts: List[str], task_type: str, title: Optional[str] = None
) -> List[List[float]]:
task_type = self.task_type or "retrieval_document"
try:
result = genai.embed_content(
model=self.model,
content=texts,
task_type=task_type,
title=title,
)
except Exception as e:
raise GoogleGenerativeAIError(f"Error embedding content: {e}") from e
return result["embedding"]
def embed_documents(
self, texts: List[str], batch_size: int = 5
) -> List[List[float]]:
"""Embed a list of strings. Vertex AI currently
sets a max batch size of 5 strings.
Args:
texts: List[str] The list of strings to embed.
batch_size: [int] The batch size of embeddings to send to the model
Returns:
List of embeddings, one for each text.
"""
task_type = self.task_type or "retrieval_document"
return self._embed(texts, task_type=task_type)
def embed_query(self, text: str) -> List[float]:
"""Embed a text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
task_type = self.task_type or "retrieval_query"
return self._embed([text], task_type=task_type)[0]