mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
fbfed65fb1
```python class UsageMetadata(TypedDict): """Usage metadata for a message, such as token counts. Attributes: input_tokens: (int) count of input (or prompt) tokens output_tokens: (int) count of output (or completion) tokens total_tokens: (int) total token count """ input_tokens: int output_tokens: int total_tokens: int ``` ```python class AIMessage(BaseMessage): ... usage_metadata: Optional[UsageMetadata] = None """If provided, token usage information associated with the message.""" ... ``` |
||
---|---|---|
.. | ||
langchain_mistralai | ||
scripts | ||
tests | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
poetry.lock | ||
pyproject.toml | ||
README.md |
langchain-mistralai
This package contains the LangChain integrations for MistralAI through their mistralai SDK.
Installation
pip install -U langchain-mistralai
Chat Models
This package contains the ChatMistralAI
class, which is the recommended way to interface with MistralAI models.
To use, install the requirements, and configure your environment.
export MISTRAL_API_KEY=your-api-key
Then initialize
from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI
chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)
ChatMistralAI
also supports async and streaming functionality:
# For async...
await chat.ainvoke(messages)
# For streaming...
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
Embeddings
With MistralAIEmbeddings
, you can directly use the default model 'mistral-embed', or set a different one if available.
Choose model
embedding.model = 'mistral-embed'
Simple query
res_query = embedding.embed_query("The test information")
Documents
res_document = embedding.embed_documents(["test1", "another test"])