mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
f98d7f7494
- **Description:** Support reranking based on cross encoder models available from HuggingFace. - Added `CrossEncoder` schema - Implemented `HuggingFaceCrossEncoder` and `SagemakerEndpointCrossEncoder` - Implemented `CrossEncoderReranker` that performs similar functionality to `CohereRerank` - Added `cross-encoder-reranker.ipynb` to demonstrate how to use it. Please let me know if anything else needs to be done to make it visible on the table-of-contents navigation bar on the left, or on the card list on [retrievers documentation page](https://python.langchain.com/docs/integrations/retrievers). - **Issue:** N/A - **Dependencies:** None other than the existing ones. --------- Co-authored-by: Kenny Choe <kchoe@amazon.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
152 lines
5.2 KiB
Python
152 lines
5.2 KiB
Python
import json
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
|
|
|
from langchain_community.cross_encoders.base import BaseCrossEncoder
|
|
|
|
|
|
class CrossEncoderContentHandler:
|
|
"""Content handler for CrossEncoder class."""
|
|
|
|
content_type = "application/json"
|
|
accepts = "application/json"
|
|
|
|
def transform_input(self, text_pairs: List[Tuple[str, str]]) -> bytes:
|
|
input_str = json.dumps({"text_pairs": text_pairs})
|
|
return input_str.encode("utf-8")
|
|
|
|
def transform_output(self, output: Any) -> List[float]:
|
|
response_json = json.loads(output.read().decode("utf-8"))
|
|
scores = response_json["scores"]
|
|
return scores
|
|
|
|
|
|
class SagemakerEndpointCrossEncoder(BaseModel, BaseCrossEncoder):
|
|
"""SageMaker Inference CrossEncoder endpoint.
|
|
|
|
To use, you must supply the endpoint name from your deployed
|
|
Sagemaker model & the region where it is deployed.
|
|
|
|
To authenticate, the AWS client uses the following methods to
|
|
automatically load credentials:
|
|
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
|
|
If a specific credential profile should be used, you must pass
|
|
the name of the profile from the ~/.aws/credentials file that is to be used.
|
|
|
|
Make sure the credentials / roles used have the required policies to
|
|
access the Sagemaker endpoint.
|
|
See: https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
|
|
"""
|
|
|
|
"""
|
|
Example:
|
|
.. code-block:: python
|
|
|
|
|
|
from langchain.embeddings import SagemakerEndpointCrossEncoder
|
|
endpoint_name = (
|
|
"my-endpoint-name"
|
|
)
|
|
region_name = (
|
|
"us-west-2"
|
|
)
|
|
credentials_profile_name = (
|
|
"default"
|
|
)
|
|
se = SagemakerEndpointCrossEncoder(
|
|
endpoint_name=endpoint_name,
|
|
region_name=region_name,
|
|
credentials_profile_name=credentials_profile_name
|
|
)
|
|
"""
|
|
client: Any #: :meta private:
|
|
|
|
endpoint_name: str = ""
|
|
"""The name of the endpoint from the deployed Sagemaker model.
|
|
Must be unique within an AWS Region."""
|
|
|
|
region_name: str = ""
|
|
"""The aws region where the Sagemaker model is deployed, eg. `us-west-2`."""
|
|
|
|
credentials_profile_name: Optional[str] = None
|
|
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
|
|
has either access keys or role information specified.
|
|
If not specified, the default credential profile or, if on an EC2 instance,
|
|
credentials from IMDS will be used.
|
|
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
|
|
"""
|
|
|
|
content_handler: CrossEncoderContentHandler = CrossEncoderContentHandler()
|
|
|
|
model_kwargs: Optional[Dict] = None
|
|
"""Keyword arguments to pass to the model."""
|
|
|
|
endpoint_kwargs: Optional[Dict] = None
|
|
"""Optional attributes passed to the invoke_endpoint
|
|
function. See `boto3`_. docs for more info.
|
|
.. _boto3: <https://boto3.amazonaws.com/v1/documentation/api/latest/index.html>
|
|
"""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@root_validator()
|
|
def validate_environment(cls, values: Dict) -> Dict:
|
|
"""Validate that AWS credentials to and python package exists in environment."""
|
|
try:
|
|
import boto3
|
|
|
|
try:
|
|
if values["credentials_profile_name"] is not None:
|
|
session = boto3.Session(
|
|
profile_name=values["credentials_profile_name"]
|
|
)
|
|
else:
|
|
# use default credentials
|
|
session = boto3.Session()
|
|
|
|
values["client"] = session.client(
|
|
"sagemaker-runtime", region_name=values["region_name"]
|
|
)
|
|
|
|
except Exception as e:
|
|
raise ValueError(
|
|
"Could not load credentials to authenticate with AWS client. "
|
|
"Please check that credentials in the specified "
|
|
"profile name are valid."
|
|
) from e
|
|
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import boto3 python package. "
|
|
"Please install it with `pip install boto3`."
|
|
)
|
|
return values
|
|
|
|
def score(self, text_pairs: List[Tuple[str, str]]) -> List[float]:
|
|
"""Call out to SageMaker Inference CrossEncoder endpoint."""
|
|
_endpoint_kwargs = self.endpoint_kwargs or {}
|
|
|
|
body = self.content_handler.transform_input(text_pairs)
|
|
content_type = self.content_handler.content_type
|
|
accepts = self.content_handler.accepts
|
|
|
|
# send request
|
|
try:
|
|
response = self.client.invoke_endpoint(
|
|
EndpointName=self.endpoint_name,
|
|
Body=body,
|
|
ContentType=content_type,
|
|
Accept=accepts,
|
|
**_endpoint_kwargs,
|
|
)
|
|
except Exception as e:
|
|
raise ValueError(f"Error raised by inference endpoint: {e}")
|
|
|
|
return self.content_handler.transform_output(response["Body"])
|