langchain/libs/partners/anthropic
Bagatur 9514bc4d67
core[minor], ...: add tool calls message (#18947)
core[minor], langchain[patch], openai[minor], anthropic[minor], fireworks[minor], groq[minor], mistralai[minor]

```python
class ToolCall(TypedDict):
    name: str
    args: Dict[str, Any]
    id: Optional[str]

class InvalidToolCall(TypedDict):
    name: Optional[str]
    args: Optional[str]
    id: Optional[str]
    error: Optional[str]

class ToolCallChunk(TypedDict):
    name: Optional[str]
    args: Optional[str]
    id: Optional[str]
    index: Optional[int]


class AIMessage(BaseMessage):
    ...
    tool_calls: List[ToolCall] = []
    invalid_tool_calls: List[InvalidToolCall] = []
    ...


class AIMessageChunk(AIMessage, BaseMessageChunk):
    ...
    tool_call_chunks: Optional[List[ToolCallChunk]] = None
    ...
```
Important considerations:
- Parsing logic occurs within different providers;
- ~Changing output type is a breaking change for anyone doing explicit
type checking;~
- ~Langsmith rendering will need to be updated:
https://github.com/langchain-ai/langchainplus/pull/3561~
- ~Langserve will need to be updated~
- Adding chunks:
- ~AIMessage + ToolCallsMessage = ToolCallsMessage if either has
non-null .tool_calls.~
- Tool call chunks are appended, merging when having equal values of
`index`.
  - additional_kwargs accumulate the normal way.
- During streaming:
- ~Messages can change types (e.g., from AIMessageChunk to
AIToolCallsMessageChunk)~
- Output parsers parse additional_kwargs (during .invoke they read off
tool calls).

Packages outside of `partners/`:
- https://github.com/langchain-ai/langchain-cohere/pull/7
- https://github.com/langchain-ai/langchain-google/pull/123/files

---------

Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-04-09 18:41:42 -05:00
..
langchain_anthropic core[minor], ...: add tool calls message (#18947) 2024-04-09 18:41:42 -05:00
scripts infra: add print rule to ruff (#16221) 2024-02-09 16:13:30 -08:00
tests core[minor], ...: add tool calls message (#18947) 2024-04-09 18:41:42 -05:00
.gitignore anthropic: beta messages integration (#14928) 2023-12-19 18:55:19 -08:00
LICENSE anthropic: beta messages integration (#14928) 2023-12-19 18:55:19 -08:00
Makefile anthropic[patch]: de-beta anthropic messages, release 0.0.2 (#17540) 2024-02-14 10:31:45 -08:00
poetry.lock anthropic[patch]: Release 0.1.7 (#20240) 2024-04-09 21:53:16 +00:00
pyproject.toml anthropic[patch]: Release 0.1.7 (#20240) 2024-04-09 21:53:16 +00:00
README.md anthropic[minor]: add tool calling (#18554) 2024-03-05 08:30:16 -08:00

langchain-anthropic

This package contains the LangChain integration for Anthropic's generative models.

Installation

pip install -U langchain-anthropic

Chat Models

Anthropic recommends using their chat models over text completions.

You can see their recommended models here.

To use, you should have an Anthropic API key configured. Initialize the model as:

from langchain_anthropic import ChatAnthropic
from langchain_core.messages import AIMessage, HumanMessage

model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0, max_tokens=1024)

Define the input message

message = HumanMessage(content="What is the capital of France?")

Generate a response using the model

response = model.invoke([message])

For a more detailed walkthrough see here.

LLMs (Legacy)

You can use the Claude 2 models for text completions.

from langchain_anthropic import AnthropicLLM

model = AnthropicLLM(model="claude-2.1", temperature=0, max_tokens=1024)
response = model.invoke("The best restaurant in San Francisco is: ")