langchain/docs/modules/prompts/example_selectors/examples/length_based.ipynb
Harrison Chase 705431aecc
big docs refactor (#1978)
Co-authored-by: Ankush Gola <ankush.gola@gmail.com>
2023-03-26 19:49:46 -07:00

212 lines
5.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "861a4d1f",
"metadata": {},
"source": [
"# LengthBased ExampleSelector\n",
"\n",
"This ExampleSelector selects which examples to use based on length. This is useful when you are worried about constructing a prompt that will go over the length of the context window. For longer inputs, it will select fewer examples to include, while for shorter inputs it will select more.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "7c469c95",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"from langchain.prompts import FewShotPromptTemplate\n",
"from langchain.prompts.example_selector import LengthBasedExampleSelector"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0ec6d950",
"metadata": {},
"outputs": [],
"source": [
"# These are a lot of examples of a pretend task of creating antonyms.\n",
"examples = [\n",
" {\"input\": \"happy\", \"output\": \"sad\"},\n",
" {\"input\": \"tall\", \"output\": \"short\"},\n",
" {\"input\": \"energetic\", \"output\": \"lethargic\"},\n",
" {\"input\": \"sunny\", \"output\": \"gloomy\"},\n",
" {\"input\": \"windy\", \"output\": \"calm\"},\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "207e55f7",
"metadata": {},
"outputs": [],
"source": [
"example_prompt = PromptTemplate(\n",
" input_variables=[\"input\", \"output\"],\n",
" template=\"Input: {input}\\nOutput: {output}\",\n",
")\n",
"example_selector = LengthBasedExampleSelector(\n",
" # These are the examples it has available to choose from.\n",
" examples=examples, \n",
" # This is the PromptTemplate being used to format the examples.\n",
" example_prompt=example_prompt, \n",
" # This is the maximum length that the formatted examples should be.\n",
" # Length is measured by the get_text_length function below.\n",
" max_length=25,\n",
" # This is the function used to get the length of a string, which is used\n",
" # to determine which examples to include. It is commented out because\n",
" # it is provided as a default value if none is specified.\n",
" # get_text_length: Callable[[str], int] = lambda x: len(re.split(\"\\n| \", x))\n",
")\n",
"dynamic_prompt = FewShotPromptTemplate(\n",
" # We provide an ExampleSelector instead of examples.\n",
" example_selector=example_selector,\n",
" example_prompt=example_prompt,\n",
" prefix=\"Give the antonym of every input\",\n",
" suffix=\"Input: {adjective}\\nOutput:\", \n",
" input_variables=[\"adjective\"],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d00b4385",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: energetic\n",
"Output: lethargic\n",
"\n",
"Input: sunny\n",
"Output: gloomy\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: big\n",
"Output:\n"
]
}
],
"source": [
"# An example with small input, so it selects all examples.\n",
"print(dynamic_prompt.format(adjective=\"big\"))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "878bcde9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\n",
"Output:\n"
]
}
],
"source": [
"# An example with long input, so it selects only one example.\n",
"long_string = \"big and huge and massive and large and gigantic and tall and much much much much much bigger than everything else\"\n",
"print(dynamic_prompt.format(adjective=long_string))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e4bebcd9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Give the antonym of every input\n",
"\n",
"Input: happy\n",
"Output: sad\n",
"\n",
"Input: tall\n",
"Output: short\n",
"\n",
"Input: energetic\n",
"Output: lethargic\n",
"\n",
"Input: sunny\n",
"Output: gloomy\n",
"\n",
"Input: windy\n",
"Output: calm\n",
"\n",
"Input: big\n",
"Output: small\n",
"\n",
"Input: enthusiastic\n",
"Output:\n"
]
}
],
"source": [
"# You can add an example to an example selector as well.\n",
"new_example = {\"input\": \"big\", \"output\": \"small\"}\n",
"dynamic_prompt.example_selector.add_example(new_example)\n",
"print(dynamic_prompt.format(adjective=\"enthusiastic\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39f30097",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}