mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
579 lines
18 KiB
Plaintext
579 lines
18 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ba5f8741",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Plug-and-Plai\n",
|
|
"\n",
|
|
"This notebook builds upon the idea of [plugin retrieval](./custom_agent_with_plugin_retrieval.html), but pulls all tools from `plugnplai` - a directory of AI Plugins."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "fea4812c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up environment\n",
|
|
"\n",
|
|
"Do necessary imports, etc."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aca08be8",
|
|
"metadata": {},
|
|
"source": [
|
|
"Install plugnplai lib to get a list of active plugins from https://plugplai.com directory"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "52e248c9",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.1.1\u001b[0m\n",
|
|
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"pip install plugnplai -q"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "9af9734e",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import re\n",
|
|
"from typing import Union\n",
|
|
"\n",
|
|
"import plugnplai\n",
|
|
"from langchain.agents import (\n",
|
|
" AgentExecutor,\n",
|
|
" AgentOutputParser,\n",
|
|
" LLMSingleActionAgent,\n",
|
|
")\n",
|
|
"from langchain.chains import LLMChain\n",
|
|
"from langchain.prompts import StringPromptTemplate\n",
|
|
"from langchain.schema import AgentAction, AgentFinish\n",
|
|
"from langchain_community.agent_toolkits import NLAToolkit\n",
|
|
"from langchain_community.llms import OpenAI\n",
|
|
"from langchain_community.tools.plugin import AIPlugin"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2f91d8b4",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Setup LLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "a1a3b59c",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = OpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "6df0253f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up plugins\n",
|
|
"\n",
|
|
"Load and index plugins"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "9e0f7882",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get all plugins from plugnplai.com\n",
|
|
"urls = plugnplai.get_plugins()\n",
|
|
"\n",
|
|
"# Get ChatGPT plugins - only ChatGPT verified plugins\n",
|
|
"urls = plugnplai.get_plugins(filter=\"ChatGPT\")\n",
|
|
"\n",
|
|
"# Get working plugins - only tested plugins (in progress)\n",
|
|
"urls = plugnplai.get_plugins(filter=\"working\")\n",
|
|
"\n",
|
|
"\n",
|
|
"AI_PLUGINS = [AIPlugin.from_url(url + \"/.well-known/ai-plugin.json\") for url in urls]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "17362717",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Tool Retriever\n",
|
|
"\n",
|
|
"We will use a vectorstore to create embeddings for each tool description. Then, for an incoming query we can create embeddings for that query and do a similarity search for relevant tools."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "77c4be4b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.schema import Document\n",
|
|
"from langchain_community.embeddings import OpenAIEmbeddings\n",
|
|
"from langchain_community.vectorstores import FAISS"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "9092a158",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.2 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load an OpenAPI 3.0.1 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n",
|
|
"Attempting to load a Swagger 2.0 spec. This may result in degraded performance. Convert your OpenAPI spec to 3.1.* spec for better support.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"embeddings = OpenAIEmbeddings()\n",
|
|
"docs = [\n",
|
|
" Document(\n",
|
|
" page_content=plugin.description_for_model,\n",
|
|
" metadata={\"plugin_name\": plugin.name_for_model},\n",
|
|
" )\n",
|
|
" for plugin in AI_PLUGINS\n",
|
|
"]\n",
|
|
"vector_store = FAISS.from_documents(docs, embeddings)\n",
|
|
"toolkits_dict = {\n",
|
|
" plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)\n",
|
|
" for plugin in AI_PLUGINS\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "735a7566",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"retriever = vector_store.as_retriever()\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_tools(query):\n",
|
|
" # Get documents, which contain the Plugins to use\n",
|
|
" docs = retriever.get_relevant_documents(query)\n",
|
|
" # Get the toolkits, one for each plugin\n",
|
|
" tool_kits = [toolkits_dict[d.metadata[\"plugin_name\"]] for d in docs]\n",
|
|
" # Get the tools: a separate NLAChain for each endpoint\n",
|
|
" tools = []\n",
|
|
" for tk in tool_kits:\n",
|
|
" tools.extend(tk.nla_tools)\n",
|
|
" return tools"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "7699afd7",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can now test this retriever to see if it seems to work."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "425f2886",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['Milo.askMilo',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
|
|
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
|
|
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
|
|
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
|
|
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
|
|
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
|
|
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
|
|
" 'SchoolDigger_API_V2.0.Schools_GetSchool20',\n",
|
|
" 'Speak.translate',\n",
|
|
" 'Speak.explainPhrase',\n",
|
|
" 'Speak.explainTask']"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"tools = get_tools(\"What could I do today with my kiddo\")\n",
|
|
"[t.name for t in tools]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "3aa88768",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['Open_AI_Klarna_product_Api.productsUsingGET',\n",
|
|
" 'Milo.askMilo',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.search_all_actions',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.preview_a_zap',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.get_configuration_link',\n",
|
|
" 'Zapier_Natural_Language_Actions_(NLA)_API_(Dynamic)_-_Beta.list_exposed_actions',\n",
|
|
" 'SchoolDigger_API_V2.0.Autocomplete_GetSchools',\n",
|
|
" 'SchoolDigger_API_V2.0.Districts_GetAllDistricts2',\n",
|
|
" 'SchoolDigger_API_V2.0.Districts_GetDistrict2',\n",
|
|
" 'SchoolDigger_API_V2.0.Rankings_GetSchoolRank2',\n",
|
|
" 'SchoolDigger_API_V2.0.Rankings_GetRank_District',\n",
|
|
" 'SchoolDigger_API_V2.0.Schools_GetAllSchools20',\n",
|
|
" 'SchoolDigger_API_V2.0.Schools_GetSchool20']"
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"tools = get_tools(\"what shirts can i buy?\")\n",
|
|
"[t.name for t in tools]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "2e7a075c",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Prompt Template\n",
|
|
"\n",
|
|
"The prompt template is pretty standard, because we're not actually changing that much logic in the actual prompt template, but rather we are just changing how retrieval is done."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "339b1bb8",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Set up the base template\n",
|
|
"template = \"\"\"Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:\n",
|
|
"\n",
|
|
"{tools}\n",
|
|
"\n",
|
|
"Use the following format:\n",
|
|
"\n",
|
|
"Question: the input question you must answer\n",
|
|
"Thought: you should always think about what to do\n",
|
|
"Action: the action to take, should be one of [{tool_names}]\n",
|
|
"Action Input: the input to the action\n",
|
|
"Observation: the result of the action\n",
|
|
"... (this Thought/Action/Action Input/Observation can repeat N times)\n",
|
|
"Thought: I now know the final answer\n",
|
|
"Final Answer: the final answer to the original input question\n",
|
|
"\n",
|
|
"Begin! Remember to speak as a pirate when giving your final answer. Use lots of \"Arg\"s\n",
|
|
"\n",
|
|
"Question: {input}\n",
|
|
"{agent_scratchpad}\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1583acdc",
|
|
"metadata": {},
|
|
"source": [
|
|
"The custom prompt template now has the concept of a tools_getter, which we call on the input to select the tools to use"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"id": "fd969d31",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from typing import Callable\n",
|
|
"\n",
|
|
"\n",
|
|
"# Set up a prompt template\n",
|
|
"class CustomPromptTemplate(StringPromptTemplate):\n",
|
|
" # The template to use\n",
|
|
" template: str\n",
|
|
" ############## NEW ######################\n",
|
|
" # The list of tools available\n",
|
|
" tools_getter: Callable\n",
|
|
"\n",
|
|
" def format(self, **kwargs) -> str:\n",
|
|
" # Get the intermediate steps (AgentAction, Observation tuples)\n",
|
|
" # Format them in a particular way\n",
|
|
" intermediate_steps = kwargs.pop(\"intermediate_steps\")\n",
|
|
" thoughts = \"\"\n",
|
|
" for action, observation in intermediate_steps:\n",
|
|
" thoughts += action.log\n",
|
|
" thoughts += f\"\\nObservation: {observation}\\nThought: \"\n",
|
|
" # Set the agent_scratchpad variable to that value\n",
|
|
" kwargs[\"agent_scratchpad\"] = thoughts\n",
|
|
" ############## NEW ######################\n",
|
|
" tools = self.tools_getter(kwargs[\"input\"])\n",
|
|
" # Create a tools variable from the list of tools provided\n",
|
|
" kwargs[\"tools\"] = \"\\n\".join(\n",
|
|
" [f\"{tool.name}: {tool.description}\" for tool in tools]\n",
|
|
" )\n",
|
|
" # Create a list of tool names for the tools provided\n",
|
|
" kwargs[\"tool_names\"] = \", \".join([tool.name for tool in tools])\n",
|
|
" return self.template.format(**kwargs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"id": "798ef9fb",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"prompt = CustomPromptTemplate(\n",
|
|
" template=template,\n",
|
|
" tools_getter=get_tools,\n",
|
|
" # This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically\n",
|
|
" # This includes the `intermediate_steps` variable because that is needed\n",
|
|
" input_variables=[\"input\", \"intermediate_steps\"],\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ef3a1af3",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Output Parser\n",
|
|
"\n",
|
|
"The output parser is unchanged from the previous notebook, since we are not changing anything about the output format."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"id": "7c6fe0d3",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"class CustomOutputParser(AgentOutputParser):\n",
|
|
" def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:\n",
|
|
" # Check if agent should finish\n",
|
|
" if \"Final Answer:\" in llm_output:\n",
|
|
" return AgentFinish(\n",
|
|
" # Return values is generally always a dictionary with a single `output` key\n",
|
|
" # It is not recommended to try anything else at the moment :)\n",
|
|
" return_values={\"output\": llm_output.split(\"Final Answer:\")[-1].strip()},\n",
|
|
" log=llm_output,\n",
|
|
" )\n",
|
|
" # Parse out the action and action input\n",
|
|
" regex = r\"Action\\s*\\d*\\s*:(.*?)\\nAction\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)\"\n",
|
|
" match = re.search(regex, llm_output, re.DOTALL)\n",
|
|
" if not match:\n",
|
|
" raise ValueError(f\"Could not parse LLM output: `{llm_output}`\")\n",
|
|
" action = match.group(1).strip()\n",
|
|
" action_input = match.group(2)\n",
|
|
" # Return the action and action input\n",
|
|
" return AgentAction(\n",
|
|
" tool=action, tool_input=action_input.strip(\" \").strip('\"'), log=llm_output\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "d278706a",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"output_parser = CustomOutputParser()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "170587b1",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Set up LLM, stop sequence, and the agent\n",
|
|
"\n",
|
|
"Also the same as the previous notebook"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"id": "f9d4c374",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"llm = OpenAI(temperature=0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"id": "9b1cc2a2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# LLM chain consisting of the LLM and a prompt\n",
|
|
"llm_chain = LLMChain(llm=llm, prompt=prompt)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"id": "e4f5092f",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"tool_names = [tool.name for tool in tools]\n",
|
|
"agent = LLMSingleActionAgent(\n",
|
|
" llm_chain=llm_chain,\n",
|
|
" output_parser=output_parser,\n",
|
|
" stop=[\"\\nObservation:\"],\n",
|
|
" allowed_tools=tool_names,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aa8a5326",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use the Agent\n",
|
|
"\n",
|
|
"Now we can use it!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"id": "490604e9",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"agent_executor = AgentExecutor.from_agent_and_tools(\n",
|
|
" agent=agent, tools=tools, verbose=True\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"id": "653b1617",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
|
"\u001b[32;1m\u001b[1;3mThought: I need to find a product API\n",
|
|
"Action: Open_AI_Klarna_product_Api.productsUsingGET\n",
|
|
"Action Input: shirts\u001b[0m\n",
|
|
"\n",
|
|
"Observation:\u001b[36;1m\u001b[1;3mI found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\u001b[32;1m\u001b[1;3m I now know what shirts I can buy\n",
|
|
"Final Answer: Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Arg, I found 10 shirts from the API response. They range in price from $9.99 to $450.00 and come in a variety of materials, colors, and patterns.'"
|
|
]
|
|
},
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"agent_executor.run(\"what shirts can i buy?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2481ee76",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
},
|
|
"vscode": {
|
|
"interpreter": {
|
|
"hash": "3ccef4e08d87aa1eeb90f63e0f071292ccb2e9c42e70f74ab2bf6f5493ca7bbc"
|
|
}
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|