mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
165 lines
3.6 KiB
Plaintext
165 lines
3.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ab66dd43",
|
|
"metadata": {},
|
|
"source": [
|
|
"# ElasticSearch BM25\n",
|
|
"\n",
|
|
"This notebook goes over how to use a retriever that under the hood uses ElasticSearcha and BM25.\n",
|
|
"\n",
|
|
"For more information on the details of BM25 see [this blog post](https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "393ac030",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.retrievers import ElasticSearchBM25Retriever"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "aaf80e7f",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create New Retriever"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "bcb3c8c2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"elasticsearch_url=\"http://localhost:9200\"\n",
|
|
"retriever = ElasticSearchBM25Retriever.create(elasticsearch_url, \"langchain-index-4\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"id": "b605284d",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Alternatively, you can load an existing index\n",
|
|
"# import elasticsearch\n",
|
|
"# elasticsearch_url=\"http://localhost:9200\"\n",
|
|
"# retriever = ElasticSearchBM25Retriever(elasticsearch.Elasticsearch(elasticsearch_url), \"langchain-index\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "1c518c42",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Add texts (if necessary)\n",
|
|
"\n",
|
|
"We can optionally add texts to the retriever (if they aren't already in there)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "98b1c017",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['cbd4cb47-8d9f-4f34-b80e-ea871bc49856',\n",
|
|
" 'f3bd2e24-76d1-4f9b-826b-ec4c0e8c7365',\n",
|
|
" '8631bfc8-7c12-48ee-ab56-8ad5f373676e',\n",
|
|
" '8be8374c-3253-4d87-928d-d73550a2ecf0',\n",
|
|
" 'd79f457b-2842-4eab-ae10-77aa420b53d7']"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"retriever.add_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "08437fa2",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Use Retriever\n",
|
|
"\n",
|
|
"We can now use the retriever!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "c0455218",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"result = retriever.get_relevant_documents(\"foo\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "7dfa5c29",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='foo', metadata={}),\n",
|
|
" Document(page_content='foo bar', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"result"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "74bd9256",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|