langchain/libs/community/langchain_community/llms/beam.py
Erick Friis 3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00

273 lines
8.9 KiB
Python

import base64
import json
import logging
import subprocess
import textwrap
import time
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra, Field, root_validator
from langchain_core.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
DEFAULT_NUM_TRIES = 10
DEFAULT_SLEEP_TIME = 4
class Beam(LLM):
"""Beam API for gpt2 large language model.
To use, you should have the ``beam-sdk`` python package installed,
and the environment variable ``BEAM_CLIENT_ID`` set with your client id
and ``BEAM_CLIENT_SECRET`` set with your client secret. Information on how
to get this is available here: https://docs.beam.cloud/account/api-keys.
The wrapper can then be called as follows, where the name, cpu, memory, gpu,
python version, and python packages can be updated accordingly. Once deployed,
the instance can be called.
Example:
.. code-block:: python
llm = Beam(model_name="gpt2",
name="langchain-gpt2",
cpu=8,
memory="32Gi",
gpu="A10G",
python_version="python3.8",
python_packages=[
"diffusers[torch]>=0.10",
"transformers",
"torch",
"pillow",
"accelerate",
"safetensors",
"xformers",],
max_length=50)
llm._deploy()
call_result = llm._call(input)
"""
model_name: str = ""
name: str = ""
cpu: str = ""
memory: str = ""
gpu: str = ""
python_version: str = ""
python_packages: List[str] = []
max_length: str = ""
url: str = ""
"""model endpoint to use"""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not
explicitly specified."""
beam_client_id: str = ""
beam_client_secret: str = ""
app_id: Optional[str] = None
class Config:
"""Configuration for this pydantic config."""
extra = Extra.forbid
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
beam_client_id = get_from_dict_or_env(
values, "beam_client_id", "BEAM_CLIENT_ID"
)
beam_client_secret = get_from_dict_or_env(
values, "beam_client_secret", "BEAM_CLIENT_SECRET"
)
values["beam_client_id"] = beam_client_id
values["beam_client_secret"] = beam_client_secret
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_name": self.model_name,
"name": self.name,
"cpu": self.cpu,
"memory": self.memory,
"gpu": self.gpu,
"python_version": self.python_version,
"python_packages": self.python_packages,
"max_length": self.max_length,
"model_kwargs": self.model_kwargs,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "beam"
def app_creation(self) -> None:
"""Creates a Python file which will contain your Beam app definition."""
script = textwrap.dedent(
"""\
import beam
# The environment your code will run on
app = beam.App(
name="{name}",
cpu={cpu},
memory="{memory}",
gpu="{gpu}",
python_version="{python_version}",
python_packages={python_packages},
)
app.Trigger.RestAPI(
inputs={{"prompt": beam.Types.String(), "max_length": beam.Types.String()}},
outputs={{"text": beam.Types.String()}},
handler="run.py:beam_langchain",
)
"""
)
script_name = "app.py"
with open(script_name, "w") as file:
file.write(
script.format(
name=self.name,
cpu=self.cpu,
memory=self.memory,
gpu=self.gpu,
python_version=self.python_version,
python_packages=self.python_packages,
)
)
def run_creation(self) -> None:
"""Creates a Python file which will be deployed on beam."""
script = textwrap.dedent(
"""
import os
import transformers
from transformers import GPT2LMHeadModel, GPT2Tokenizer
model_name = "{model_name}"
def beam_langchain(**inputs):
prompt = inputs["prompt"]
length = inputs["max_length"]
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
encodedPrompt = tokenizer.encode(prompt, return_tensors='pt')
outputs = model.generate(encodedPrompt, max_length=int(length),
do_sample=True, pad_token_id=tokenizer.eos_token_id)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output) # noqa: T201
return {{"text": output}}
"""
)
script_name = "run.py"
with open(script_name, "w") as file:
file.write(script.format(model_name=self.model_name))
def _deploy(self) -> str:
"""Call to Beam."""
try:
import beam # type: ignore
if beam.__path__ == "":
raise ImportError
except ImportError:
raise ImportError(
"Could not import beam python package. "
"Please install it with `curl "
"https://raw.githubusercontent.com/slai-labs"
"/get-beam/main/get-beam.sh -sSfL | sh`."
)
self.app_creation()
self.run_creation()
process = subprocess.run(
"beam deploy app.py", shell=True, capture_output=True, text=True
)
if process.returncode == 0:
output = process.stdout
logger.info(output)
lines = output.split("\n")
for line in lines:
if line.startswith(" i Send requests to: https://apps.beam.cloud/"):
self.app_id = line.split("/")[-1]
self.url = line.split(":")[1].strip()
return self.app_id
raise ValueError(
f"""Failed to retrieve the appID from the deployment output.
Deployment output: {output}"""
)
else:
raise ValueError(f"Deployment failed. Error: {process.stderr}")
@property
def authorization(self) -> str:
if self.beam_client_id:
credential_str = self.beam_client_id + ":" + self.beam_client_secret
else:
credential_str = self.beam_client_secret
return base64.b64encode(credential_str.encode()).decode()
def _call(
self,
prompt: str,
stop: Optional[list] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to Beam."""
url = "https://apps.beam.cloud/" + self.app_id if self.app_id else self.url
payload = {"prompt": prompt, "max_length": self.max_length}
payload.update(kwargs)
headers = {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Authorization": "Basic " + self.authorization,
"Connection": "keep-alive",
"Content-Type": "application/json",
}
for _ in range(DEFAULT_NUM_TRIES):
request = requests.post(url, headers=headers, data=json.dumps(payload))
if request.status_code == 200:
return request.json()["text"]
time.sleep(DEFAULT_SLEEP_TIME)
logger.warning("Unable to successfully call model.")
return ""