mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
f41f4c5e37
LangServe template for a RAG Conversation App using Zep. @baskaryan, @eyurtsev --------- Co-authored-by: Erick Friis <erick@langchain.dev>
38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
# Ingest Documents into a Zep Collection
|
|
import os
|
|
|
|
from langchain.document_loaders import WebBaseLoader
|
|
from langchain.embeddings import FakeEmbeddings
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain.vectorstores.zep import CollectionConfig, ZepVectorStore
|
|
|
|
ZEP_API_URL = os.environ.get("ZEP_API_URL", "http://localhost:8000")
|
|
ZEP_API_KEY = os.environ.get("ZEP_API_KEY", None)
|
|
ZEP_COLLECTION_NAME = os.environ.get("ZEP_COLLECTION", "langchaintest")
|
|
|
|
collection_config = CollectionConfig(
|
|
name=ZEP_COLLECTION_NAME,
|
|
description="Zep collection for LangChain",
|
|
metadata={},
|
|
embedding_dimensions=1536,
|
|
is_auto_embedded=True,
|
|
)
|
|
|
|
# Load
|
|
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
|
data = loader.load()
|
|
|
|
# Split
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
|
all_splits = text_splitter.split_documents(data)
|
|
|
|
# Add to vectorDB
|
|
vectorstore = ZepVectorStore.from_documents(
|
|
documents=all_splits,
|
|
collection_name=ZEP_COLLECTION_NAME,
|
|
config=collection_config,
|
|
api_url=ZEP_API_URL,
|
|
api_key=ZEP_API_KEY,
|
|
embedding=FakeEmbeddings(size=1),
|
|
)
|