langchain/libs/experimental/langchain_experimental/llms/llamaapi.py
Leonid Ganeline 3f6bf852ea
experimental: docstrings update (#18048)
Added missed docstrings. Formatted docsctrings to the consistent format.
2024-02-23 21:24:16 -05:00

127 lines
4.2 KiB
Python

import json
import logging
from typing import (
Any,
Dict,
List,
Mapping,
Optional,
Tuple,
)
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema import (
ChatGeneration,
ChatResult,
)
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
logger = logging.getLogger(__name__)
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
# Fix for azure
# Also OpenAI returns None for tool invocations
content = _dict.get("content") or ""
if _dict.get("function_call"):
_dict["function_call"]["arguments"] = json.dumps(
_dict["function_call"]["arguments"]
)
additional_kwargs = {"function_call": dict(_dict["function_call"])}
else:
additional_kwargs = {}
return AIMessage(content=content, additional_kwargs=additional_kwargs)
elif role == "system":
return SystemMessage(content=_dict["content"])
elif role == "function":
return FunctionMessage(content=_dict["content"], name=_dict["name"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "function_call" in message.additional_kwargs:
message_dict["function_call"] = message.additional_kwargs["function_call"]
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
elif isinstance(message, FunctionMessage):
message_dict = {
"role": "function",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
class ChatLlamaAPI(BaseChatModel):
"""Chat model using the Llama API."""
client: Any #: :meta private:
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
_params = {"messages": message_dicts}
final_params = {**params, **kwargs, **_params}
response = self.client.run(final_params).json()
return self._create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params = dict(self._client_params)
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
def _create_chat_result(self, response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(
message=message,
generation_info=dict(finish_reason=res.get("finish_reason")),
)
generations.append(gen)
return ChatResult(generations=generations)
@property
def _client_params(self) -> Mapping[str, Any]:
"""Get the parameters used for the client."""
return {}
@property
def _llm_type(self) -> str:
"""Return type of chat model."""
return "llama-api"