mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
3f6bf852ea
Added missed docstrings. Formatted docsctrings to the consistent format.
179 lines
5.5 KiB
Python
179 lines
5.5 KiB
Python
"""Generic Wrapper for chat LLMs, with sample implementations
|
|
for Llama-2-chat, Llama-2-instruct and Vicuna models.
|
|
"""
|
|
from typing import Any, List, Optional, cast
|
|
|
|
from langchain.callbacks.manager import (
|
|
AsyncCallbackManagerForLLMRun,
|
|
CallbackManagerForLLMRun,
|
|
)
|
|
from langchain.schema import (
|
|
AIMessage,
|
|
BaseMessage,
|
|
ChatGeneration,
|
|
ChatResult,
|
|
HumanMessage,
|
|
LLMResult,
|
|
SystemMessage,
|
|
)
|
|
from langchain_core.language_models import LLM, BaseChatModel
|
|
|
|
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
|
|
|
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" # noqa: E501
|
|
|
|
|
|
class ChatWrapper(BaseChatModel):
|
|
"""Wrapper for chat LLMs."""
|
|
|
|
llm: LLM
|
|
sys_beg: str
|
|
sys_end: str
|
|
ai_n_beg: str
|
|
ai_n_end: str
|
|
usr_n_beg: str
|
|
usr_n_end: str
|
|
usr_0_beg: Optional[str] = None
|
|
usr_0_end: Optional[str] = None
|
|
|
|
system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
|
|
|
|
def _generate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
llm_input = self._to_chat_prompt(messages)
|
|
llm_result = self.llm._generate(
|
|
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return self._to_chat_result(llm_result)
|
|
|
|
async def _agenerate(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> ChatResult:
|
|
llm_input = self._to_chat_prompt(messages)
|
|
llm_result = await self.llm._agenerate(
|
|
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
|
|
)
|
|
return self._to_chat_result(llm_result)
|
|
|
|
def _to_chat_prompt(
|
|
self,
|
|
messages: List[BaseMessage],
|
|
) -> str:
|
|
"""Convert a list of messages into a prompt format expected by wrapped LLM."""
|
|
if not messages:
|
|
raise ValueError("at least one HumanMessage must be provided")
|
|
|
|
if not isinstance(messages[0], SystemMessage):
|
|
messages = [self.system_message] + messages
|
|
|
|
if not isinstance(messages[1], HumanMessage):
|
|
raise ValueError(
|
|
"messages list must start with a SystemMessage or UserMessage"
|
|
)
|
|
|
|
if not isinstance(messages[-1], HumanMessage):
|
|
raise ValueError("last message must be a HumanMessage")
|
|
|
|
prompt_parts = []
|
|
|
|
if self.usr_0_beg is None:
|
|
self.usr_0_beg = self.usr_n_beg
|
|
|
|
if self.usr_0_end is None:
|
|
self.usr_0_end = self.usr_n_end
|
|
|
|
prompt_parts.append(
|
|
self.sys_beg + cast(str, messages[0].content) + self.sys_end
|
|
)
|
|
prompt_parts.append(
|
|
self.usr_0_beg + cast(str, messages[1].content) + self.usr_0_end
|
|
)
|
|
|
|
for ai_message, human_message in zip(messages[2::2], messages[3::2]):
|
|
if not isinstance(ai_message, AIMessage) or not isinstance(
|
|
human_message, HumanMessage
|
|
):
|
|
raise ValueError(
|
|
"messages must be alternating human- and ai-messages, "
|
|
"optionally prepended by a system message"
|
|
)
|
|
|
|
prompt_parts.append(
|
|
self.ai_n_beg + cast(str, ai_message.content) + self.ai_n_end
|
|
)
|
|
prompt_parts.append(
|
|
self.usr_n_beg + cast(str, human_message.content) + self.usr_n_end
|
|
)
|
|
|
|
return "".join(prompt_parts)
|
|
|
|
@staticmethod
|
|
def _to_chat_result(llm_result: LLMResult) -> ChatResult:
|
|
chat_generations = []
|
|
|
|
for g in llm_result.generations[0]:
|
|
chat_generation = ChatGeneration(
|
|
message=AIMessage(content=g.text), generation_info=g.generation_info
|
|
)
|
|
chat_generations.append(chat_generation)
|
|
|
|
return ChatResult(
|
|
generations=chat_generations, llm_output=llm_result.llm_output
|
|
)
|
|
|
|
|
|
class Llama2Chat(ChatWrapper):
|
|
"""Wrapper for Llama-2-chat model."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "llama-2-chat"
|
|
|
|
sys_beg: str = "<s>[INST] <<SYS>>\n"
|
|
sys_end: str = "\n<</SYS>>\n\n"
|
|
ai_n_beg: str = " "
|
|
ai_n_end: str = " </s>"
|
|
usr_n_beg: str = "<s>[INST] "
|
|
usr_n_end: str = " [/INST]"
|
|
usr_0_beg: str = ""
|
|
usr_0_end: str = " [/INST]"
|
|
|
|
|
|
class Orca(ChatWrapper):
|
|
"""Wrapper for Orca-style models."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "orca-style"
|
|
|
|
sys_beg: str = "### System:\n"
|
|
sys_end: str = "\n\n"
|
|
ai_n_beg: str = "### Assistant:\n"
|
|
ai_n_end: str = "\n\n"
|
|
usr_n_beg: str = "### User:\n"
|
|
usr_n_end: str = "\n\n"
|
|
|
|
|
|
class Vicuna(ChatWrapper):
|
|
"""Wrapper for Vicuna-style models."""
|
|
|
|
@property
|
|
def _llm_type(self) -> str:
|
|
return "vicuna-style"
|
|
|
|
sys_beg: str = ""
|
|
sys_end: str = " "
|
|
ai_n_beg: str = "ASSISTANT: "
|
|
ai_n_end: str = " </s>"
|
|
usr_n_beg: str = "USER: "
|
|
usr_n_end: str = " "
|