langchain/docs/extras/integrations/text_embedding/google_vertex_ai_palm.ipynb
2023-09-08 10:06:37 -07:00

111 lines
3.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Google Vertex AI PaLM \n",
"\n",
">[Vertex AI PaLM API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) is a service on Google Cloud exposing the embedding models. \n",
"\n",
"Note: This integration is seperate from the Google PaLM integration.\n",
"\n",
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) Customer Data to train its foundation models as part of Google Cloud`s AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
"\n",
"To use Vertex AI PaLM you must have the `google-cloud-aiplatform` Python package installed and either:\n",
"- Have credentials configured for your environment (gcloud, workload identity, etc...)\n",
"- Store the path to a service account JSON file as the GOOGLE_APPLICATION_CREDENTIALS environment variable\n",
"\n",
"This codebase uses the `google.auth` library which first looks for the application credentials variable mentioned above, and then looks for system-level auth.\n",
"\n",
"For more information, see: \n",
"- https://cloud.google.com/docs/authentication/application-default-credentials#GAC\n",
"- https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#!pip install google-cloud-aiplatform"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import VertexAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"embeddings = VertexAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"doc_result = embeddings.embed_documents([text])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"vscode": {
"interpreter": {
"hash": "cc99336516f23363341912c6723b01ace86f02e26b4290be1efc0677e2e2ec24"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}