langchain/libs/experimental/tests/integration_tests/chains/test_cpal.py
2023-08-22 14:09:35 -04:00

555 lines
21 KiB
Python

"""Test CPAL chain."""
import json
import unittest
from typing import Type
from unittest import mock
import pytest
from langchain import OpenAI
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts.prompt import PromptTemplate
from langchain_experimental import pydantic_v1 as pydantic
from langchain_experimental.cpal.base import (
CausalChain,
CPALChain,
InterventionChain,
NarrativeChain,
QueryChain,
)
from langchain_experimental.cpal.constants import Constant
from langchain_experimental.cpal.models import (
CausalModel,
EntityModel,
EntitySettingModel,
InterventionModel,
NarrativeModel,
QueryModel,
)
from langchain_experimental.cpal.templates.univariate.causal import (
template as causal_template,
)
from langchain_experimental.cpal.templates.univariate.intervention import (
template as intervention_template,
)
from langchain_experimental.cpal.templates.univariate.narrative import (
template as narrative_template,
)
from langchain_experimental.cpal.templates.univariate.query import (
template as query_template,
)
from tests.unit_tests.llms.fake_llm import FakeLLM
class TestUnitCPALChain_MathWordProblems(unittest.TestCase):
"""Unit Test the CPAL chain and its component chains on math word problems.
These tests can't run in the standard unit test directory because of
this issue, https://github.com/hwchase17/langchain/issues/7451
"""
def setUp(self) -> None:
self.fake_llm = self.make_fake_llm()
def make_fake_llm(self) -> FakeLLM:
"""
Fake LLM service for testing CPAL chain and its components chains
on univariate math examples.
"""
class LLMMockData(pydantic.BaseModel):
question: str
completion: str
template: str
data_model: Type[pydantic.BaseModel]
@property
def prompt(self) -> str:
"""Create LLM prompt with the question."""
prompt_template = PromptTemplate(
input_variables=[Constant.narrative_input.value],
template=self.template,
partial_variables={
"format_instructions": PydanticOutputParser(
pydantic_object=self.data_model
).get_format_instructions()
},
)
prompt = prompt_template.format(narrative_input=self.question)
return prompt
narrative = LLMMockData(
**{
"question": (
"jan has three times the number of pets as marcia. "
"marcia has two more pets than cindy."
"if cindy has ten pets, how many pets does jan have? "
),
"completion": json.dumps(
{
"story_outcome_question": "how many pets does jan have? ",
"story_hypothetical": "if cindy has ten pets",
"story_plot": "jan has three times the number of pets as marcia. marcia has two more pets than cindy.", # noqa: E501
}
),
"template": narrative_template,
"data_model": NarrativeModel,
}
)
causal_model = LLMMockData(
**{
"question": (
"jan has three times the number of pets as marcia. "
"marcia has two more pets than cindy."
),
"completion": (
"\n"
"{\n"
' "attribute": "pet_count",\n'
' "entities": [\n'
" {\n"
' "name": "cindy",\n'
' "value": 0,\n'
' "depends_on": [],\n'
' "code": "pass"\n'
" },\n"
" {\n"
' "name": "marcia",\n'
' "value": 0,\n'
' "depends_on": ["cindy"],\n'
' "code": "marcia.value = cindy.value + 2"\n'
" },\n"
" {\n"
' "name": "jan",\n'
' "value": 0,\n'
' "depends_on": ["marcia"],\n'
' "code": "jan.value = marcia.value * 3"\n'
" }\n"
" ]\n"
"}"
),
"template": causal_template,
"data_model": CausalModel,
}
)
intervention = LLMMockData(
**{
"question": ("if cindy has ten pets"),
"completion": (
"{\n"
' "entity_settings" : [\n'
' { "name": "cindy", "attribute": "pet_count", "value": "10" }\n' # noqa: E501
" ]\n"
"}"
),
"template": intervention_template,
"data_model": InterventionModel,
}
)
query = LLMMockData(
**{
"question": ("how many pets does jan have? "),
"completion": (
"{\n"
' "narrative_input": "how many pets does jan have? ",\n'
' "llm_error_msg": "",\n'
' "expression": "SELECT name, value FROM df WHERE name = \'jan\'"\n' # noqa: E501
"}"
),
"template": query_template,
"data_model": QueryModel,
}
)
fake_llm = FakeLLM()
fake_llm.queries = {}
for mock_data in [narrative, causal_model, intervention, query]:
fake_llm.queries.update({mock_data.prompt: mock_data.completion})
return fake_llm
def test_narrative_chain(self) -> None:
"""Test narrative chain returns the three main elements of the causal
narrative as a pydantic object.
"""
narrative_chain = NarrativeChain.from_univariate_prompt(llm=self.fake_llm)
output = narrative_chain(
(
"jan has three times the number of pets as marcia. "
"marcia has two more pets than cindy."
"if cindy has ten pets, how many pets does jan have? "
)
)
expected_output = {
"chain_answer": None,
"chain_data": NarrativeModel(
story_outcome_question="how many pets does jan have? ",
story_hypothetical="if cindy has ten pets",
story_plot="jan has three times the number of pets as marcia. marcia has two more pets than cindy.", # noqa: E501
),
"narrative_input": "jan has three times the number of pets as marcia. marcia " # noqa: E501
"has two more pets than cindy.if cindy has ten pets, how "
"many pets does jan have? ",
}
assert output == expected_output
def test_causal_chain(self) -> None:
"""
Test causal chain returns a DAG as a pydantic object.
"""
causal_chain = CausalChain.from_univariate_prompt(llm=self.fake_llm)
output = causal_chain(
(
"jan has three times the number of pets as "
"marcia. marcia has two more pets than cindy."
)
)
expected_output = {
"chain_answer": None,
"chain_data": CausalModel(
attribute="pet_count",
entities=[
EntityModel(name="cindy", code="pass", value=0.0, depends_on=[]),
EntityModel(
name="marcia",
code="marcia.value = cindy.value + 2",
value=0.0,
depends_on=["cindy"],
),
EntityModel(
name="jan",
code="jan.value = marcia.value * 3",
value=0.0,
depends_on=["marcia"],
),
],
),
"narrative_input": "jan has three times the number of pets as marcia. marcia " # noqa: E501
"has two more pets than cindy.",
}
assert output == expected_output
def test_intervention_chain(self) -> None:
"""
Test intervention chain correctly transforms
the LLM's text completion into a setting-like object.
"""
intervention_chain = InterventionChain.from_univariate_prompt(llm=self.fake_llm)
output = intervention_chain("if cindy has ten pets")
expected_output = {
"chain_answer": None,
"chain_data": InterventionModel(
entity_settings=[
EntitySettingModel(name="cindy", attribute="pet_count", value=10),
]
),
"narrative_input": "if cindy has ten pets",
}
assert output == expected_output
def test_query_chain(self) -> None:
"""
Test query chain correctly transforms
the LLM's text completion into a query-like object.
"""
query_chain = QueryChain.from_univariate_prompt(llm=self.fake_llm)
output = query_chain("how many pets does jan have? ")
expected_output = {
"chain_answer": None,
"chain_data": QueryModel(
narrative_input="how many pets does jan have? ",
llm_error_msg="",
expression="SELECT name, value FROM df WHERE name = 'jan'",
),
"narrative_input": "how many pets does jan have? ",
}
assert output == expected_output
def test_cpal_chain(self) -> None:
"""
patch required since `networkx` package is not part of unit test environment
"""
with mock.patch(
"langchain_experimental.cpal.models.NetworkxEntityGraph"
) as mock_networkx:
graph_instance = mock_networkx.return_value
graph_instance.get_topological_sort.return_value = [
"cindy",
"marcia",
"jan",
]
cpal_chain = CPALChain.from_univariate_prompt(
llm=self.fake_llm, verbose=True
)
cpal_chain.run(
(
"jan has three times the number of pets as "
"marcia. marcia has two more pets than cindy."
"if cindy has ten pets, how many pets does jan have? "
)
)
class TestCPALChain_MathWordProblems(unittest.TestCase):
"""Test the CPAL chain and its component chains on math word problems."""
def test_causal_chain(self) -> None:
"""Test CausalChain can translate a narrative's plot into a causal model
containing operations linked by a DAG."""
llm = OpenAI(temperature=0, max_tokens=512)
casual_chain = CausalChain.from_univariate_prompt(llm)
narrative_plot = (
"Jan has three times the number of pets as Marcia. "
"Marcia has two more pets than Cindy. "
)
output = casual_chain(narrative_plot)
expected_output = {
"chain_answer": None,
"chain_data": CausalModel(
attribute="pet_count",
entities=[
EntityModel(name="cindy", code="pass", value=0.0, depends_on=[]),
EntityModel(
name="marcia",
code="marcia.value = cindy.value + 2",
value=0.0,
depends_on=["cindy"],
),
EntityModel(
name="jan",
code="jan.value = marcia.value * 3",
value=0.0,
depends_on=["marcia"],
),
],
),
"narrative_input": "Jan has three times the number of pets as Marcia. Marcia " # noqa: E501
"has two more pets than Cindy. ",
}
self.assertDictEqual(output, expected_output)
self.assertEqual(
isinstance(output[Constant.chain_data.value], CausalModel), True
)
def test_intervention_chain(self) -> None:
"""Test InterventionChain translates a hypothetical into a new value setting."""
llm = OpenAI(temperature=0, max_tokens=512)
story_conditions_chain = InterventionChain.from_univariate_prompt(llm)
question = "if cindy has ten pets"
data = story_conditions_chain(question)[Constant.chain_data.value]
self.assertEqual(type(data), InterventionModel)
def test_intervention_chain_2(self) -> None:
"""Test InterventionChain translates a hypothetical into a new value setting."""
llm = OpenAI(temperature=0, max_tokens=512)
story_conditions_chain = InterventionChain.from_univariate_prompt(llm)
narrative_condition = "What if Cindy has ten pets and Boris has 5 pets? "
data = story_conditions_chain(narrative_condition)[Constant.chain_data.value]
self.assertEqual(type(data), InterventionModel)
def test_query_chain(self) -> None:
"""Test QueryChain translates a question into a query expression."""
llm = OpenAI(temperature=0, max_tokens=512)
query_chain = QueryChain.from_univariate_prompt(llm)
narrative_question = "How many pets will Marcia end up with? "
data = query_chain(narrative_question)[Constant.chain_data.value]
self.assertEqual(type(data), QueryModel)
def test_narrative_chain(self) -> None:
"""Test NarrativeChain decomposes a human's narrative into three story elements:
- causal model
- intervention model
- query model
"""
narrative = (
"Jan has three times the number of pets as Marcia. "
"Marcia has two more pets than Cindy. "
"If Cindy has ten pets, how many pets does Jan have? "
)
llm = OpenAI(temperature=0, max_tokens=512)
narrative_chain = NarrativeChain.from_univariate_prompt(llm)
data = narrative_chain(narrative)[Constant.chain_data.value]
self.assertEqual(type(data), NarrativeModel)
out = narrative_chain(narrative)
expected_narrative_out = {
"chain_answer": None,
"chain_data": NarrativeModel(
story_outcome_question="how many pets does Jan have?",
story_hypothetical="If Cindy has ten pets",
story_plot="Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy.", # noqa: E501
),
"narrative_input": "Jan has three times the number of pets as Marcia. Marcia " # noqa: E501
"has two more pets than Cindy. If Cindy has ten pets, how "
"many pets does Jan have? ",
}
self.assertDictEqual(out, expected_narrative_out)
def test_against_pal_chain_doc(self) -> None:
"""
Test CPAL chain against the first example in the PAL chain notebook doc:
https://github.com/hwchase17/langchain/blob/master/docs/extras/modules/chains/additional/pal.ipynb
"""
narrative_input = (
"Jan has three times the number of pets as Marcia."
" Marcia has two more pets than Cindy."
" If Cindy has four pets, how many total pets do the three have?"
)
llm = OpenAI(temperature=0, max_tokens=512)
cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)
answer = cpal_chain.run(narrative_input)
"""
>>> story._outcome_table
name code value depends_on
0 cindy pass 4.0 []
1 marcia marcia.value = cindy.value + 2 6.0 [cindy]
2 jan jan.value = marcia.value * 3 18.0 [marcia]
"""
self.assertEqual(answer, 28.0)
def test_simple(self) -> None:
"""
Given a simple math word problem here we are test and illustrate the
the data structures that are produced by the CPAL chain.
"""
narrative_input = (
"jan has three times the number of pets as marcia."
"marcia has two more pets than cindy."
"If cindy has ten pets, how many pets does jan have?"
)
llm = OpenAI(temperature=0, max_tokens=512)
cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)
output = cpal_chain(narrative_input)
data = output[Constant.chain_data.value]
expected_output = {
"causal_operations": {
"attribute": "pet_count",
"entities": [
{"code": "pass", "depends_on": [], "name": "cindy", "value": 10.0},
{
"code": "marcia.value = cindy.value + 2",
"depends_on": ["cindy"],
"name": "marcia",
"value": 12.0,
},
{
"code": "jan.value = marcia.value * 3",
"depends_on": ["marcia"],
"name": "jan",
"value": 36.0,
},
],
},
"intervention": {
"entity_settings": [
{"attribute": "pet_count", "name": "cindy", "value": 10.0}
],
"system_settings": None,
},
"query": {
"expression": "SELECT name, value FROM df WHERE name = 'jan'",
"llm_error_msg": "",
"question": "how many pets does jan have?",
},
}
self.assertDictEqual(data.dict(), expected_output)
"""
Illustrate the query model's result table as a printed pandas dataframe
>>> data._outcome_table
name code value depends_on
0 cindy pass 10.0 []
1 marcia marcia.value = cindy.value + 2 12.0 [cindy]
2 jan jan.value = marcia.value * 3 36.0 [marcia]
"""
expected_output = {
"code": {
0: "pass",
1: "marcia.value = cindy.value + 2",
2: "jan.value = marcia.value * 3",
},
"depends_on": {0: [], 1: ["cindy"], 2: ["marcia"]},
"name": {0: "cindy", 1: "marcia", 2: "jan"},
"value": {0: 10.0, 1: 12.0, 2: 36.0},
}
self.assertDictEqual(data._outcome_table.to_dict(), expected_output)
expected_output = {"name": {0: "jan"}, "value": {0: 36.0}}
self.assertDictEqual(data.query._result_table.to_dict(), expected_output)
# TODO: use an LLM chain to translate numbers to words
df = data.query._result_table
expr = "name == 'jan'"
answer = df.query(expr).iloc[0]["value"]
self.assertEqual(float(answer), 36.0)
def test_hallucinating(self) -> None:
"""
Test CPAL approach does not hallucinate when given
an invalid entity in the question.
The PAL chain would hallucinates here!
"""
narrative_input = (
"Jan has three times the number of pets as Marcia."
"Marcia has two more pets than Cindy."
"If Cindy has ten pets, how many pets does Barak have?"
)
llm = OpenAI(temperature=0, max_tokens=512)
cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)
with pytest.raises(Exception) as e_info:
print(e_info)
cpal_chain.run(narrative_input)
def test_causal_mediator(self) -> None:
"""
Test CPAL approach on causal mediator.
"""
narrative_input = (
"jan has three times the number of pets as marcia."
"marcia has two more pets than cindy."
"If marcia has ten pets, how many pets does jan have?"
)
llm = OpenAI(temperature=0, max_tokens=512)
cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)
answer = cpal_chain.run(narrative_input)
self.assertEqual(answer, 30.0)
@pytest.mark.skip(reason="requires manual install of debian and py packages")
def test_draw(self) -> None:
"""
Test CPAL chain can draw its resulting DAG.
"""
import os
narrative_input = (
"Jan has three times the number of pets as Marcia."
"Marcia has two more pets than Cindy."
"If Marcia has ten pets, how many pets does Jan have?"
)
llm = OpenAI(temperature=0, max_tokens=512)
cpal_chain = CPALChain.from_univariate_prompt(llm=llm, verbose=True)
cpal_chain.run(narrative_input)
path = "graph.svg"
cpal_chain.draw(path=path)
self.assertTrue(os.path.exists(path))