mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
95cf7de112
Adding scheduled daily GHA that runs marked integration tests. To start just marking some tests in test_openai
92 lines
3.6 KiB
Python
92 lines
3.6 KiB
Python
"""Test SQL Database Chain."""
|
|
from langchain.llms.openai import OpenAI
|
|
from langchain.utilities.sql_database import SQLDatabase
|
|
from libs.experimental.langchain_experimental.sql.base import (
|
|
SQLDatabaseChain,
|
|
SQLDatabaseSequentialChain,
|
|
)
|
|
from sqlalchemy import Column, Integer, MetaData, String, Table, create_engine, insert
|
|
|
|
metadata_obj = MetaData()
|
|
|
|
user = Table(
|
|
"user",
|
|
metadata_obj,
|
|
Column("user_id", Integer, primary_key=True),
|
|
Column("user_name", String(16), nullable=False),
|
|
Column("user_company", String(16), nullable=False),
|
|
)
|
|
|
|
|
|
def test_sql_database_run() -> None:
|
|
"""Test that commands can be run successfully and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_run_update() -> None:
|
|
"""Test that update commands run successfully and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("Update Harrison's workplace to Bar")
|
|
expected_output = " Harrison's workplace has been updated to Bar."
|
|
assert output == expected_output
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Bar."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_sequential_chain_run() -> None:
|
|
"""Test that commands can be run successfully SEQUENTIALLY
|
|
and returned in correct format."""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(OpenAI(temperature=0), db)
|
|
output = db_chain.run("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output == expected_output
|
|
|
|
|
|
def test_sql_database_sequential_chain_intermediate_steps() -> None:
|
|
"""Test that commands can be run successfully SEQUENTIALLY and returned
|
|
in correct format. switch Intermediate steps"""
|
|
engine = create_engine("sqlite:///:memory:")
|
|
metadata_obj.create_all(engine)
|
|
stmt = insert(user).values(user_id=13, user_name="Harrison", user_company="Foo")
|
|
with engine.connect() as conn:
|
|
conn.execute(stmt)
|
|
db = SQLDatabase(engine)
|
|
db_chain = SQLDatabaseSequentialChain.from_llm(
|
|
OpenAI(temperature=0), db, return_intermediate_steps=True
|
|
)
|
|
output = db_chain("What company does Harrison work at?")
|
|
expected_output = " Harrison works at Foo."
|
|
assert output["result"] == expected_output
|
|
|
|
query = output["intermediate_steps"][0]
|
|
expected_query = (
|
|
" SELECT user_company FROM user WHERE user_name = 'Harrison' LIMIT 1;"
|
|
)
|
|
assert query == expected_query
|
|
|
|
query_results = output["intermediate_steps"][1]
|
|
expected_query_results = "[('Foo',)]"
|
|
assert query_results == expected_query_results
|