mirror of
https://github.com/hwchase17/langchain
synced 2024-11-20 03:25:56 +00:00
ed789be8f4
- chat models, messages - documents - agentaction/finish - baseretriever,document - stroutputparser - more messages - basemessage - format_document - baseoutputparser --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
111 lines
3.5 KiB
Python
111 lines
3.5 KiB
Python
import os
|
|
from typing import List, Tuple
|
|
|
|
from langchain.agents import AgentExecutor
|
|
from langchain.agents.format_scratchpad import format_log_to_messages
|
|
from langchain.agents.output_parsers import (
|
|
ReActJsonSingleInputOutputParser,
|
|
)
|
|
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
|
from langchain.pydantic_v1 import BaseModel, Field
|
|
from langchain.tools.render import render_text_description_and_args
|
|
from langchain_community.chat_models import ChatOllama
|
|
from langchain_core.messages import AIMessage, HumanMessage
|
|
|
|
from neo4j_semantic_ollama.information_tool import InformationTool
|
|
from neo4j_semantic_ollama.memory_tool import MemoryTool
|
|
from neo4j_semantic_ollama.recommendation_tool import RecommenderTool
|
|
from neo4j_semantic_ollama.smalltalk_tool import SmalltalkTool
|
|
|
|
llm = ChatOllama(
|
|
model="mixtral",
|
|
temperature=0,
|
|
base_url=os.environ["OLLAMA_BASE_URL"],
|
|
streaming=True,
|
|
)
|
|
chat_model_with_stop = llm.bind(stop=["\nObservation"])
|
|
tools = [InformationTool(), RecommenderTool(), MemoryTool(), SmalltalkTool()]
|
|
|
|
# Inspiration taken from hub.pull("hwchase17/react-json")
|
|
system_message = f"""Answer the following questions as best you can.
|
|
You can answer directly if the user is greeting you or similar.
|
|
Otherise, you have access to the following tools:
|
|
|
|
{render_text_description_and_args(tools).replace('{', '{{').replace('}', '}}')}
|
|
|
|
The way you use the tools is by specifying a json blob.
|
|
Specifically, this json should have a `action` key (with the name of the tool to use)
|
|
and a `action_input` key (with the input to the tool going here).
|
|
The only values that should be in the "action" field are: {[t.name for t in tools]}
|
|
The $JSON_BLOB should only contain a SINGLE action,
|
|
do NOT return a list of multiple actions.
|
|
Here is an example of a valid $JSON_BLOB:
|
|
```
|
|
{{{{
|
|
"action": $TOOL_NAME,
|
|
"action_input": $INPUT
|
|
}}}}
|
|
```
|
|
The $JSON_BLOB must always be enclosed with triple backticks!
|
|
|
|
ALWAYS use the following format:
|
|
Question: the input question you must answer
|
|
Thought: you should always think about what to do
|
|
Action:```
|
|
$JSON_BLOB
|
|
```
|
|
Observation: the result of the action...
|
|
(this Thought/Action/Observation can repeat N times)
|
|
Thought: I now know the final answer
|
|
Final Answer: the final answer to the original input question
|
|
|
|
Begin! Reminder to always use the exact characters `Final Answer` when responding.'
|
|
"""
|
|
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
(
|
|
"user",
|
|
system_message,
|
|
),
|
|
MessagesPlaceholder(variable_name="chat_history"),
|
|
("user", "{input}"),
|
|
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
|
]
|
|
)
|
|
|
|
|
|
def _format_chat_history(chat_history: List[Tuple[str, str]]):
|
|
buffer = []
|
|
for human, ai in chat_history:
|
|
buffer.append(HumanMessage(content=human))
|
|
buffer.append(AIMessage(content=ai))
|
|
return buffer
|
|
|
|
|
|
agent = (
|
|
{
|
|
"input": lambda x: x["input"],
|
|
"agent_scratchpad": lambda x: format_log_to_messages(x["intermediate_steps"]),
|
|
"chat_history": lambda x: (
|
|
_format_chat_history(x["chat_history"]) if x.get("chat_history") else []
|
|
),
|
|
}
|
|
| prompt
|
|
| chat_model_with_stop
|
|
| ReActJsonSingleInputOutputParser()
|
|
)
|
|
|
|
|
|
# Add typing for input
|
|
class AgentInput(BaseModel):
|
|
input: str
|
|
chat_history: List[Tuple[str, str]] = Field(
|
|
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
|
|
)
|
|
|
|
|
|
agent_executor = AgentExecutor(agent=agent, tools=tools).with_types(
|
|
input_type=AgentInput
|
|
)
|