langchain/langchain/text_splitter.py
Davis Chase eb180e321f
Page per class-style api reference (#6560)
can make it prettier, but what do we think of overall structure?

https://api.python.langchain.com/en/dev2049-page_per_class/api_ref.html

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-06-30 09:23:32 -07:00

1059 lines
36 KiB
Python

"""Functionality for splitting text."""
from __future__ import annotations
import copy
import logging
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import Enum
from typing import (
AbstractSet,
Any,
Callable,
Collection,
Dict,
Iterable,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
TypedDict,
TypeVar,
Union,
cast,
)
from langchain.docstore.document import Document
from langchain.schema import BaseDocumentTransformer
logger = logging.getLogger(__name__)
TS = TypeVar("TS", bound="TextSplitter")
def _split_text_with_regex(
text: str, separator: str, keep_separator: bool
) -> List[str]:
# Now that we have the separator, split the text
if separator:
if keep_separator:
# The parentheses in the pattern keep the delimiters in the result.
_splits = re.split(f"({separator})", text)
splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)]
if len(_splits) % 2 == 0:
splits += _splits[-1:]
splits = [_splits[0]] + splits
else:
splits = text.split(separator)
else:
splits = list(text)
return [s for s in splits if s != ""]
class TextSplitter(BaseDocumentTransformer, ABC):
"""Interface for splitting text into chunks."""
def __init__(
self,
chunk_size: int = 4000,
chunk_overlap: int = 200,
length_function: Callable[[str], int] = len,
keep_separator: bool = False,
add_start_index: bool = False,
) -> None:
"""Create a new TextSplitter.
Args:
chunk_size: Maximum size of chunks to return
chunk_overlap: Overlap in characters between chunks
length_function: Function that measures the length of given chunks
keep_separator: Whether to keep the separator in the chunks
add_start_index: If `True`, includes chunk's start index in metadata
"""
if chunk_overlap > chunk_size:
raise ValueError(
f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
f"({chunk_size}), should be smaller."
)
self._chunk_size = chunk_size
self._chunk_overlap = chunk_overlap
self._length_function = length_function
self._keep_separator = keep_separator
self._add_start_index = add_start_index
@abstractmethod
def split_text(self, text: str) -> List[str]:
"""Split text into multiple components."""
def create_documents(
self, texts: List[str], metadatas: Optional[List[dict]] = None
) -> List[Document]:
"""Create documents from a list of texts."""
_metadatas = metadatas or [{}] * len(texts)
documents = []
for i, text in enumerate(texts):
index = -1
for chunk in self.split_text(text):
metadata = copy.deepcopy(_metadatas[i])
if self._add_start_index:
index = text.find(chunk, index + 1)
metadata["start_index"] = index
new_doc = Document(page_content=chunk, metadata=metadata)
documents.append(new_doc)
return documents
def split_documents(self, documents: Iterable[Document]) -> List[Document]:
"""Split documents."""
texts, metadatas = [], []
for doc in documents:
texts.append(doc.page_content)
metadatas.append(doc.metadata)
return self.create_documents(texts, metadatas=metadatas)
def _join_docs(self, docs: List[str], separator: str) -> Optional[str]:
text = separator.join(docs)
text = text.strip()
if text == "":
return None
else:
return text
def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]:
# We now want to combine these smaller pieces into medium size
# chunks to send to the LLM.
separator_len = self._length_function(separator)
docs = []
current_doc: List[str] = []
total = 0
for d in splits:
_len = self._length_function(d)
if (
total + _len + (separator_len if len(current_doc) > 0 else 0)
> self._chunk_size
):
if total > self._chunk_size:
logger.warning(
f"Created a chunk of size {total}, "
f"which is longer than the specified {self._chunk_size}"
)
if len(current_doc) > 0:
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
# Keep on popping if:
# - we have a larger chunk than in the chunk overlap
# - or if we still have any chunks and the length is long
while total > self._chunk_overlap or (
total + _len + (separator_len if len(current_doc) > 0 else 0)
> self._chunk_size
and total > 0
):
total -= self._length_function(current_doc[0]) + (
separator_len if len(current_doc) > 1 else 0
)
current_doc = current_doc[1:]
current_doc.append(d)
total += _len + (separator_len if len(current_doc) > 1 else 0)
doc = self._join_docs(current_doc, separator)
if doc is not None:
docs.append(doc)
return docs
@classmethod
def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
"""Text splitter that uses HuggingFace tokenizer to count length."""
try:
from transformers import PreTrainedTokenizerBase
if not isinstance(tokenizer, PreTrainedTokenizerBase):
raise ValueError(
"Tokenizer received was not an instance of PreTrainedTokenizerBase"
)
def _huggingface_tokenizer_length(text: str) -> int:
return len(tokenizer.encode(text))
except ImportError:
raise ValueError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
return cls(length_function=_huggingface_tokenizer_length, **kwargs)
@classmethod
def from_tiktoken_encoder(
cls: Type[TS],
encoding_name: str = "gpt2",
model_name: Optional[str] = None,
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
**kwargs: Any,
) -> TS:
"""Text splitter that uses tiktoken encoder to count length."""
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to calculate max_tokens_for_prompt. "
"Please install it with `pip install tiktoken`."
)
if model_name is not None:
enc = tiktoken.encoding_for_model(model_name)
else:
enc = tiktoken.get_encoding(encoding_name)
def _tiktoken_encoder(text: str) -> int:
return len(
enc.encode(
text,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
)
if issubclass(cls, TokenTextSplitter):
extra_kwargs = {
"encoding_name": encoding_name,
"model_name": model_name,
"allowed_special": allowed_special,
"disallowed_special": disallowed_special,
}
kwargs = {**kwargs, **extra_kwargs}
return cls(length_function=_tiktoken_encoder, **kwargs)
def transform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Transform sequence of documents by splitting them."""
return self.split_documents(list(documents))
async def atransform_documents(
self, documents: Sequence[Document], **kwargs: Any
) -> Sequence[Document]:
"""Asynchronously transform a sequence of documents by splitting them."""
raise NotImplementedError
class CharacterTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at characters."""
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
self._separator = separator
def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
splits = _split_text_with_regex(text, self._separator, self._keep_separator)
_separator = "" if self._keep_separator else self._separator
return self._merge_splits(splits, _separator)
class LineType(TypedDict):
"""Line type as typed dict."""
metadata: Dict[str, str]
content: str
class HeaderType(TypedDict):
"""Header type as typed dict."""
level: int
name: str
data: str
class MarkdownHeaderTextSplitter:
"""Implementation of splitting markdown files based on specified headers."""
def __init__(
self, headers_to_split_on: List[Tuple[str, str]], return_each_line: bool = False
):
"""Create a new MarkdownHeaderTextSplitter.
Args:
headers_to_split_on: Headers we want to track
return_each_line: Return each line w/ associated headers
"""
# Output line-by-line or aggregated into chunks w/ common headers
self.return_each_line = return_each_line
# Given the headers we want to split on,
# (e.g., "#, ##, etc") order by length
self.headers_to_split_on = sorted(
headers_to_split_on, key=lambda split: len(split[0]), reverse=True
)
def aggregate_lines_to_chunks(self, lines: List[LineType]) -> List[Document]:
"""Combine lines with common metadata into chunks
Args:
lines: Line of text / associated header metadata
"""
aggregated_chunks: List[LineType] = []
for line in lines:
if (
aggregated_chunks
and aggregated_chunks[-1]["metadata"] == line["metadata"]
):
# If the last line in the aggregated list
# has the same metadata as the current line,
# append the current content to the last lines's content
aggregated_chunks[-1]["content"] += " \n" + line["content"]
else:
# Otherwise, append the current line to the aggregated list
aggregated_chunks.append(line)
return [
Document(page_content=chunk["content"], metadata=chunk["metadata"])
for chunk in aggregated_chunks
]
def split_text(self, text: str) -> List[Document]:
"""Split markdown file
Args:
text: Markdown file"""
# Split the input text by newline character ("\n").
lines = text.split("\n")
# Final output
lines_with_metadata: List[LineType] = []
# Content and metadata of the chunk currently being processed
current_content: List[str] = []
current_metadata: Dict[str, str] = {}
# Keep track of the nested header structure
# header_stack: List[Dict[str, Union[int, str]]] = []
header_stack: List[HeaderType] = []
initial_metadata: Dict[str, str] = {}
for line in lines:
stripped_line = line.strip()
# Check each line against each of the header types (e.g., #, ##)
for sep, name in self.headers_to_split_on:
# Check if line starts with a header that we intend to split on
if stripped_line.startswith(sep) and (
# Header with no text OR header is followed by space
# Both are valid conditions that sep is being used a header
len(stripped_line) == len(sep)
or stripped_line[len(sep)] == " "
):
# Ensure we are tracking the header as metadata
if name is not None:
# Get the current header level
current_header_level = sep.count("#")
# Pop out headers of lower or same level from the stack
while (
header_stack
and header_stack[-1]["level"] >= current_header_level
):
# We have encountered a new header
# at the same or higher level
popped_header = header_stack.pop()
# Clear the metadata for the
# popped header in initial_metadata
if popped_header["name"] in initial_metadata:
initial_metadata.pop(popped_header["name"])
# Push the current header to the stack
header: HeaderType = {
"level": current_header_level,
"name": name,
"data": stripped_line[len(sep) :].strip(),
}
header_stack.append(header)
# Update initial_metadata with the current header
initial_metadata[name] = header["data"]
# Add the previous line to the lines_with_metadata
# only if current_content is not empty
if current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
break
else:
if stripped_line:
current_content.append(stripped_line)
elif current_content:
lines_with_metadata.append(
{
"content": "\n".join(current_content),
"metadata": current_metadata.copy(),
}
)
current_content.clear()
current_metadata = initial_metadata.copy()
if current_content:
lines_with_metadata.append(
{"content": "\n".join(current_content), "metadata": current_metadata}
)
# lines_with_metadata has each line with associated header metadata
# aggregate these into chunks based on common metadata
if not self.return_each_line:
return self.aggregate_lines_to_chunks(lines_with_metadata)
else:
return [
Document(page_content=chunk["content"], metadata=chunk["metadata"])
for chunk in lines_with_metadata
]
# should be in newer Python versions (3.10+)
# @dataclass(frozen=True, kw_only=True, slots=True)
@dataclass(frozen=True)
class Tokenizer:
chunk_overlap: int
tokens_per_chunk: int
decode: Callable[[list[int]], str]
encode: Callable[[str], List[int]]
def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> List[str]:
"""Split incoming text and return chunks."""
splits: List[str] = []
input_ids = tokenizer.encode(text)
start_idx = 0
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
while start_idx < len(input_ids):
splits.append(tokenizer.decode(chunk_ids))
start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
chunk_ids = input_ids[start_idx:cur_idx]
return splits
class TokenTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at tokens."""
def __init__(
self,
encoding_name: str = "gpt2",
model_name: Optional[str] = None,
allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
disallowed_special: Union[Literal["all"], Collection[str]] = "all",
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for TokenTextSplitter. "
"Please install it with `pip install tiktoken`."
)
if model_name is not None:
enc = tiktoken.encoding_for_model(model_name)
else:
enc = tiktoken.get_encoding(encoding_name)
self._tokenizer = enc
self._allowed_special = allowed_special
self._disallowed_special = disallowed_special
def split_text(self, text: str) -> List[str]:
def _encode(_text: str) -> List[int]:
return self._tokenizer.encode(
_text,
allowed_special=self._allowed_special,
disallowed_special=self._disallowed_special,
)
tokenizer = Tokenizer(
chunk_overlap=self._chunk_overlap,
tokens_per_chunk=self._chunk_size,
decode=self._tokenizer.decode,
encode=_encode,
)
return split_text_on_tokens(text=text, tokenizer=tokenizer)
class SentenceTransformersTokenTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at tokens."""
def __init__(
self,
chunk_overlap: int = 50,
model_name: str = "sentence-transformers/all-mpnet-base-v2",
tokens_per_chunk: Optional[int] = None,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(**kwargs, chunk_overlap=chunk_overlap)
try:
from sentence_transformers import SentenceTransformer
except ImportError:
raise ImportError(
"Could not import sentence_transformer python package. "
"This is needed in order to for SentenceTransformersTokenTextSplitter. "
"Please install it with `pip install sentence-transformers`."
)
self.model_name = model_name
self._model = SentenceTransformer(self.model_name)
self.tokenizer = self._model.tokenizer
self._initialize_chunk_configuration(tokens_per_chunk=tokens_per_chunk)
def _initialize_chunk_configuration(
self, *, tokens_per_chunk: Optional[int]
) -> None:
self.maximum_tokens_per_chunk = cast(int, self._model.max_seq_length)
if tokens_per_chunk is None:
self.tokens_per_chunk = self.maximum_tokens_per_chunk
else:
self.tokens_per_chunk = tokens_per_chunk
if self.tokens_per_chunk > self.maximum_tokens_per_chunk:
raise ValueError(
f"The token limit of the models '{self.model_name}'"
f" is: {self.maximum_tokens_per_chunk}."
f" Argument tokens_per_chunk={self.tokens_per_chunk}"
f" > maximum token limit."
)
def split_text(self, text: str) -> List[str]:
def encode_strip_start_and_stop_token_ids(text: str) -> List[int]:
return self._encode(text)[1:-1]
tokenizer = Tokenizer(
chunk_overlap=self._chunk_overlap,
tokens_per_chunk=self.tokens_per_chunk,
decode=self.tokenizer.decode,
encode=encode_strip_start_and_stop_token_ids,
)
return split_text_on_tokens(text=text, tokenizer=tokenizer)
def count_tokens(self, *, text: str) -> int:
return len(self._encode(text))
_max_length_equal_32_bit_integer = 2**32
def _encode(self, text: str) -> List[int]:
token_ids_with_start_and_end_token_ids = self.tokenizer.encode(
text,
max_length=self._max_length_equal_32_bit_integer,
truncation="do_not_truncate",
)
return token_ids_with_start_and_end_token_ids
class Language(str, Enum):
CPP = "cpp"
GO = "go"
JAVA = "java"
JS = "js"
PHP = "php"
PROTO = "proto"
PYTHON = "python"
RST = "rst"
RUBY = "ruby"
RUST = "rust"
SCALA = "scala"
SWIFT = "swift"
MARKDOWN = "markdown"
LATEX = "latex"
HTML = "html"
SOL = "sol"
class RecursiveCharacterTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at characters.
Recursively tries to split by different characters to find one
that works.
"""
def __init__(
self,
separators: Optional[List[str]] = None,
keep_separator: bool = True,
**kwargs: Any,
) -> None:
"""Create a new TextSplitter."""
super().__init__(keep_separator=keep_separator, **kwargs)
self._separators = separators or ["\n\n", "\n", " ", ""]
def _split_text(self, text: str, separators: List[str]) -> List[str]:
"""Split incoming text and return chunks."""
final_chunks = []
# Get appropriate separator to use
separator = separators[-1]
new_separators = []
for i, _s in enumerate(separators):
if _s == "":
separator = _s
break
if re.search(_s, text):
separator = _s
new_separators = separators[i + 1 :]
break
splits = _split_text_with_regex(text, separator, self._keep_separator)
# Now go merging things, recursively splitting longer texts.
_good_splits = []
_separator = "" if self._keep_separator else separator
for s in splits:
if self._length_function(s) < self._chunk_size:
_good_splits.append(s)
else:
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
_good_splits = []
if not new_separators:
final_chunks.append(s)
else:
other_info = self._split_text(s, new_separators)
final_chunks.extend(other_info)
if _good_splits:
merged_text = self._merge_splits(_good_splits, _separator)
final_chunks.extend(merged_text)
return final_chunks
def split_text(self, text: str) -> List[str]:
return self._split_text(text, self._separators)
@classmethod
def from_language(
cls, language: Language, **kwargs: Any
) -> RecursiveCharacterTextSplitter:
separators = cls.get_separators_for_language(language)
return cls(separators=separators, **kwargs)
@staticmethod
def get_separators_for_language(language: Language) -> List[str]:
if language == Language.CPP:
return [
# Split along class definitions
"\nclass ",
# Split along function definitions
"\nvoid ",
"\nint ",
"\nfloat ",
"\ndouble ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.GO:
return [
# Split along function definitions
"\nfunc ",
"\nvar ",
"\nconst ",
"\ntype ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.JAVA:
return [
# Split along class definitions
"\nclass ",
# Split along method definitions
"\npublic ",
"\nprotected ",
"\nprivate ",
"\nstatic ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.JS:
return [
# Split along function definitions
"\nfunction ",
"\nconst ",
"\nlet ",
"\nvar ",
"\nclass ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nswitch ",
"\ncase ",
"\ndefault ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PHP:
return [
# Split along function definitions
"\nfunction ",
# Split along class definitions
"\nclass ",
# Split along control flow statements
"\nif ",
"\nforeach ",
"\nwhile ",
"\ndo ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PROTO:
return [
# Split along message definitions
"\nmessage ",
# Split along service definitions
"\nservice ",
# Split along enum definitions
"\nenum ",
# Split along option definitions
"\noption ",
# Split along import statements
"\nimport ",
# Split along syntax declarations
"\nsyntax ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.PYTHON:
return [
# First, try to split along class definitions
"\nclass ",
"\ndef ",
"\n\tdef ",
# Now split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RST:
return [
# Split along section titles
"\n=+\n",
"\n-+\n",
"\n\*+\n",
# Split along directive markers
"\n\n.. *\n\n",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RUBY:
return [
# Split along method definitions
"\ndef ",
"\nclass ",
# Split along control flow statements
"\nif ",
"\nunless ",
"\nwhile ",
"\nfor ",
"\ndo ",
"\nbegin ",
"\nrescue ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.RUST:
return [
# Split along function definitions
"\nfn ",
"\nconst ",
"\nlet ",
# Split along control flow statements
"\nif ",
"\nwhile ",
"\nfor ",
"\nloop ",
"\nmatch ",
"\nconst ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.SCALA:
return [
# Split along class definitions
"\nclass ",
"\nobject ",
# Split along method definitions
"\ndef ",
"\nval ",
"\nvar ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\nmatch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.SWIFT:
return [
# Split along function definitions
"\nfunc ",
# Split along class definitions
"\nclass ",
"\nstruct ",
"\nenum ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\ndo ",
"\nswitch ",
"\ncase ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
elif language == Language.MARKDOWN:
return [
# First, try to split along Markdown headings (starting with level 2)
"\n#{1,6} ",
# Note the alternative syntax for headings (below) is not handled here
# Heading level 2
# ---------------
# End of code block
"```\n",
# Horizontal lines
"\n\*\*\*+\n",
"\n---+\n",
"\n___+\n",
# Note that this splitter doesn't handle horizontal lines defined
# by *three or more* of ***, ---, or ___, but this is not handled
"\n\n",
"\n",
" ",
"",
]
elif language == Language.LATEX:
return [
# First, try to split along Latex sections
"\n\\\chapter{",
"\n\\\section{",
"\n\\\subsection{",
"\n\\\subsubsection{",
# Now split by environments
"\n\\\begin{enumerate}",
"\n\\\begin{itemize}",
"\n\\\begin{description}",
"\n\\\begin{list}",
"\n\\\begin{quote}",
"\n\\\begin{quotation}",
"\n\\\begin{verse}",
"\n\\\begin{verbatim}",
# Now split by math environments
"\n\\\begin{align}",
"$$",
"$",
# Now split by the normal type of lines
" ",
"",
]
elif language == Language.HTML:
return [
# First, try to split along HTML tags
"<body",
"<div",
"<p",
"<br",
"<li",
"<h1",
"<h2",
"<h3",
"<h4",
"<h5",
"<h6",
"<span",
"<table",
"<tr",
"<td",
"<th",
"<ul",
"<ol",
"<header",
"<footer",
"<nav",
# Head
"<head",
"<style",
"<script",
"<meta",
"<title",
"",
]
elif language == Language.SOL:
return [
# Split along compiler informations definitions
"\npragma ",
"\nusing ",
# Split along contract definitions
"\ncontract ",
"\ninterface ",
"\nlibrary ",
# Split along method definitions
"\nconstructor ",
"\ntype ",
"\nfunction ",
"\nevent ",
"\nmodifier ",
"\nerror ",
"\nstruct ",
"\nenum ",
# Split along control flow statements
"\nif ",
"\nfor ",
"\nwhile ",
"\ndo while ",
"\nassembly ",
# Split by the normal type of lines
"\n\n",
"\n",
" ",
"",
]
else:
raise ValueError(
f"Language {language} is not supported! "
f"Please choose from {list(Language)}"
)
class NLTKTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at sentences using NLTK."""
def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
"""Initialize the NLTK splitter."""
super().__init__(**kwargs)
try:
from nltk.tokenize import sent_tokenize
self._tokenizer = sent_tokenize
except ImportError:
raise ImportError(
"NLTK is not installed, please install it with `pip install nltk`."
)
self._separator = separator
def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
# First we naively split the large input into a bunch of smaller ones.
splits = self._tokenizer(text)
return self._merge_splits(splits, self._separator)
class SpacyTextSplitter(TextSplitter):
"""Implementation of splitting text that looks at sentences using Spacy."""
def __init__(
self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any
) -> None:
"""Initialize the spacy text splitter."""
super().__init__(**kwargs)
try:
import spacy
except ImportError:
raise ImportError(
"Spacy is not installed, please install it with `pip install spacy`."
)
self._tokenizer = spacy.load(pipeline)
self._separator = separator
def split_text(self, text: str) -> List[str]:
"""Split incoming text and return chunks."""
splits = (str(s) for s in self._tokenizer(text).sents)
return self._merge_splits(splits, self._separator)
# For backwards compatibility
class PythonCodeTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Python syntax."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a PythonCodeTextSplitter."""
separators = self.get_separators_for_language(Language.PYTHON)
super().__init__(separators=separators, **kwargs)
class MarkdownTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Markdown-formatted headings."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a MarkdownTextSplitter."""
separators = self.get_separators_for_language(Language.MARKDOWN)
super().__init__(separators=separators, **kwargs)
class LatexTextSplitter(RecursiveCharacterTextSplitter):
"""Attempts to split the text along Latex-formatted layout elements."""
def __init__(self, **kwargs: Any) -> None:
"""Initialize a LatexTextSplitter."""
separators = self.get_separators_for_language(Language.LATEX)
super().__init__(separators=separators, **kwargs)