langchain/docs/extras/integrations/providers/javelin_ai_gateway.mdx
Sharath Rajasekar 96023f94d9
Add Javelin integration (#10275)
We are introducing the py integration to Javelin AI Gateway
www.getjavelin.io. Javelin is an enterprise-scale fast llm router &
gateway. Could you please review and let us know if there is anything
missing.

Javelin AI Gateway wraps Embedding, Chat and Completion LLMs. Uses
javelin_sdk under the covers (pip install javelin_sdk).

Author: Sharath Rajasekar, Twitter: @sharathr, @javelinai

Thanks!!
2023-09-20 16:36:39 -07:00

93 lines
2.4 KiB
Plaintext

# Javelin AI Gateway
[The Javelin AI Gateway](https://www.getjavelin.io) service is a high-performance, enterprise grade API Gateway for AI applications.
It is designed to streamline the usage and access of various large language model (LLM) providers,
such as OpenAI, Cohere, Anthropic and custom large language models within an organization by incorporating
robust access security for all interactions with LLMs.
Javelin offers a high-level interface that simplifies the interaction with LLMs by providing a unified endpoint
to handle specific LLM related requests.
See the Javelin AI Gateway [documentation](https://docs.getjavelin.io) for more details.
[Javelin Python SDK](https://www.github.com/getjavelin/javelin-python) is an easy to use client library meant to be embedded into AI Applications
## Installation and Setup
Install `javelin_sdk` to interact with Javelin AI Gateway:
```sh
pip install 'javelin_sdk'
```
Set the Javelin's API key as an environment variable:
```sh
export JAVELIN_API_KEY=...
```
## Completions Example
```python
from langchain.chains import LLMChain
from langchain.llms import JavelinAIGateway
from langchain.prompts import PromptTemplate
route_completions = "eng_dept03"
gateway = JavelinAIGateway(
gateway_uri="http://localhost:8000",
route=route_completions,
model_name="text-davinci-003",
)
llmchain = LLMChain(llm=gateway, prompt=prompt)
result = llmchain.run("podcast player")
print(result)
```
## Embeddings Example
```python
from langchain.embeddings import JavelinAIGatewayEmbeddings
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = JavelinAIGatewayEmbeddings(
gateway_uri="http://localhost:8000",
route="embeddings",
)
print(embeddings.embed_query("hello"))
print(embeddings.embed_documents(["hello"]))
```
## Chat Example
```python
from langchain.chat_models import ChatJavelinAIGateway
from langchain.schema import HumanMessage, SystemMessage
messages = [
SystemMessage(
content="You are a helpful assistant that translates English to French."
),
HumanMessage(
content="Artificial Intelligence has the power to transform humanity and make the world a better place"
),
]
chat = ChatJavelinAIGateway(
gateway_uri="http://localhost:8000",
route="mychatbot_route",
model_name="gpt-3.5-turbo"
params={
"temperature": 0.1
}
)
print(chat(messages))
```