mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
268 lines
5.9 KiB
Plaintext
268 lines
5.9 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "1eZl1oaVUNeC"
|
|
},
|
|
"source": [
|
|
"# Elasticsearch\n",
|
|
"Walkthrough of how to generate embeddings using a hosted embedding model in Elasticsearch\n",
|
|
"\n",
|
|
"The easiest way to instantiate the `ElasticsearchEmbeddings` class it either\n",
|
|
"- using the `from_credentials` constructor if you are using Elastic Cloud\n",
|
|
"- or using the `from_es_connection` constructor with any Elasticsearch cluster"
|
|
],
|
|
"id": "72644940"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "6dJxqebov4eU"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"!pip -q install elasticsearch langchain"
|
|
],
|
|
"id": "298759cb"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "RV7C3DUmv4aq"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import elasticsearch\n",
|
|
"from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings"
|
|
],
|
|
"id": "76489aff"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "MrT3jplJvp09"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Define the model ID\n",
|
|
"model_id = \"your_model_id\""
|
|
],
|
|
"id": "57bfdc82"
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "j5F-nwLVS_Zu"
|
|
},
|
|
"source": [
|
|
"## Testing with `from_credentials`\n",
|
|
"This required an Elastic Cloud `cloud_id`"
|
|
],
|
|
"id": "0ffad1ec"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "svtdnC-dvpxR"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Instantiate ElasticsearchEmbeddings using credentials\n",
|
|
"embeddings = ElasticsearchEmbeddings.from_credentials(\n",
|
|
" model_id,\n",
|
|
" es_cloud_id=\"your_cloud_id\",\n",
|
|
" es_user=\"your_user\",\n",
|
|
" es_password=\"your_password\",\n",
|
|
")"
|
|
],
|
|
"id": "fc2e9dcb"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "7DXZAK7Kvpth"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create embeddings for multiple documents\n",
|
|
"documents = [\n",
|
|
" \"This is an example document.\",\n",
|
|
" \"Another example document to generate embeddings for.\",\n",
|
|
"]\n",
|
|
"document_embeddings = embeddings.embed_documents(documents)"
|
|
],
|
|
"id": "8ee7f1fc"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "K8ra75W_vpqy"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print document embeddings\n",
|
|
"for i, embedding in enumerate(document_embeddings):\n",
|
|
" print(f\"Embedding for document {i+1}: {embedding}\")"
|
|
],
|
|
"id": "0b9d8471"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "V4Q5kQo9vpna"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an embedding for a single query\n",
|
|
"query = \"This is a single query.\"\n",
|
|
"query_embedding = embeddings.embed_query(query)"
|
|
],
|
|
"id": "3989ab23"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "O0oQDzGKvpkz"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print query embedding\n",
|
|
"print(f\"Embedding for query: {query_embedding}\")"
|
|
],
|
|
"id": "0da6d2bf"
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"id": "rHN03yV6TJ5q"
|
|
},
|
|
"source": [
|
|
"## Testing with Existing Elasticsearch client connection\n",
|
|
"This can be used with any Elasticsearch deployment"
|
|
],
|
|
"id": "32700096"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "GMQcJDwBTJFm"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create Elasticsearch connection\n",
|
|
"es_connection = Elasticsearch(\n",
|
|
" hosts=[\"https://es_cluster_url:port\"], basic_auth=(\"user\", \"password\")\n",
|
|
")"
|
|
],
|
|
"id": "0bc60465"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "WTYIU4u3TJO1"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Instantiate ElasticsearchEmbeddings using es_connection\n",
|
|
"embeddings = ElasticsearchEmbeddings.from_es_connection(\n",
|
|
" model_id,\n",
|
|
" es_connection,\n",
|
|
")"
|
|
],
|
|
"id": "8085843b"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "4gdAUHwoTJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create embeddings for multiple documents\n",
|
|
"documents = [\n",
|
|
" \"This is an example document.\",\n",
|
|
" \"Another example document to generate embeddings for.\",\n",
|
|
"]\n",
|
|
"document_embeddings = embeddings.embed_documents(documents)"
|
|
],
|
|
"id": "59a90bf3"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "RC_-tov6TJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print document embeddings\n",
|
|
"for i, embedding in enumerate(document_embeddings):\n",
|
|
" print(f\"Embedding for document {i+1}: {embedding}\")"
|
|
],
|
|
"id": "54b18673"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "6GEnHBqETJO3"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Create an embedding for a single query\n",
|
|
"query = \"This is a single query.\"\n",
|
|
"query_embedding = embeddings.embed_query(query)"
|
|
],
|
|
"id": "a4812d5e"
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"id": "-kyUQAXDTJO4"
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Print query embedding\n",
|
|
"print(f\"Embedding for query: {query_embedding}\")"
|
|
],
|
|
"id": "c6c69916"
|
|
}
|
|
],
|
|
"metadata": {
|
|
"colab": {
|
|
"provenance": []
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.11.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
} |