mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
194 lines
4.6 KiB
Plaintext
194 lines
4.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Motörhead Memory\n",
|
|
"[Motörhead](https://github.com/getmetal/motorhead) is a memory server implemented in Rust. It automatically handles incremental summarization in the background and allows for stateless applications.\n",
|
|
"\n",
|
|
"## Setup\n",
|
|
"\n",
|
|
"See instructions at [Motörhead](https://github.com/getmetal/motorhead) for running the server locally.\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.memory.motorhead_memory import MotorheadMemory\n",
|
|
"from langchain import OpenAI, LLMChain, PromptTemplate\n",
|
|
"\n",
|
|
"template = \"\"\"You are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"{chat_history}\n",
|
|
"Human: {human_input}\n",
|
|
"AI:\"\"\"\n",
|
|
"\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" input_variables=[\"chat_history\", \"human_input\"], template=template\n",
|
|
")\n",
|
|
"memory = MotorheadMemory(\n",
|
|
" session_id=\"testing-1\", url=\"http://localhost:8080\", memory_key=\"chat_history\"\n",
|
|
")\n",
|
|
"\n",
|
|
"await memory.init()\n",
|
|
"# loads previous state from Motörhead 🤘\n",
|
|
"\n",
|
|
"llm_chain = LLMChain(\n",
|
|
" llm=OpenAI(),\n",
|
|
" prompt=prompt,\n",
|
|
" verbose=True,\n",
|
|
" memory=memory,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"\n",
|
|
"Human: hi im bob\n",
|
|
"AI:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' Hi Bob, nice to meet you! How are you doing today?'"
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.run(\"hi im bob\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"Human: hi im bob\n",
|
|
"AI: Hi Bob, nice to meet you! How are you doing today?\n",
|
|
"Human: whats my name?\n",
|
|
"AI:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"' You said your name is Bob. Is that correct?'"
|
|
]
|
|
},
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.run(\"whats my name?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"\n",
|
|
"\n",
|
|
"\u001b[1m> Entering new LLMChain chain...\u001b[0m\n",
|
|
"Prompt after formatting:\n",
|
|
"\u001b[32;1m\u001b[1;3mYou are a chatbot having a conversation with a human.\n",
|
|
"\n",
|
|
"Human: hi im bob\n",
|
|
"AI: Hi Bob, nice to meet you! How are you doing today?\n",
|
|
"Human: whats my name?\n",
|
|
"AI: You said your name is Bob. Is that correct?\n",
|
|
"Human: whats for dinner?\n",
|
|
"AI:\u001b[0m\n",
|
|
"\n",
|
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"\" I'm sorry, I'm not sure what you're asking. Could you please rephrase your question?\""
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"llm_chain.run(\"whats for dinner?\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|