mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
5d7c6d1bca
--------- Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
136 lines
5.2 KiB
Python
136 lines
5.2 KiB
Python
import asyncio
|
|
from typing import Any, Dict, List, Optional, Union
|
|
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.prompts.few_shot import FewShotPromptTemplate
|
|
from langchain.pydantic_v1 import BaseModel, root_validator
|
|
from langchain.schema.language_model import BaseLanguageModel
|
|
|
|
|
|
class SyntheticDataGenerator(BaseModel):
|
|
"""Generates synthetic data using the given LLM and few-shot template.
|
|
|
|
Utilizes the provided LLM to produce synthetic data based on the
|
|
few-shot prompt template.
|
|
|
|
Attributes:
|
|
template (FewShotPromptTemplate): Template for few-shot prompting.
|
|
llm (Optional[BaseLanguageModel]): Large Language Model to use for generation.
|
|
llm_chain (Optional[Chain]): LLM chain with the LLM and few-shot template.
|
|
example_input_key (str): Key to use for storing example inputs.
|
|
|
|
Usage Example:
|
|
>>> template = FewShotPromptTemplate(...)
|
|
>>> llm = BaseLanguageModel(...)
|
|
>>> generator = SyntheticDataGenerator(template=template, llm=llm)
|
|
>>> results = generator.generate(subject="climate change", runs=5)
|
|
"""
|
|
|
|
template: FewShotPromptTemplate
|
|
llm: Optional[BaseLanguageModel] = None
|
|
results: list = []
|
|
llm_chain: Optional[Chain] = None
|
|
example_input_key: str = "example"
|
|
|
|
class Config:
|
|
validate_assignment = True
|
|
|
|
@root_validator(pre=False, skip_on_failure=True)
|
|
def set_llm_chain(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
|
llm_chain = values.get("llm_chain")
|
|
llm = values.get("llm")
|
|
few_shot_template = values.get("template")
|
|
|
|
if not llm_chain: # If llm_chain is None or not present
|
|
if llm is None or few_shot_template is None:
|
|
raise ValueError(
|
|
"Both llm and few_shot_template must be provided if llm_chain is "
|
|
"not given."
|
|
)
|
|
values["llm_chain"] = LLMChain(llm=llm, prompt=few_shot_template)
|
|
|
|
return values
|
|
|
|
@staticmethod
|
|
def _format_dict_to_string(input_dict: Dict) -> str:
|
|
formatted_str = ", ".join(
|
|
[f"{key}: {value}" for key, value in input_dict.items()]
|
|
)
|
|
return formatted_str
|
|
|
|
def _update_examples(self, example: Union[BaseModel, Dict[str, Any], str]) -> None:
|
|
"""Prevents duplicates by adding previously generated examples to the few shot
|
|
list."""
|
|
if self.template and self.template.examples:
|
|
if isinstance(example, BaseModel):
|
|
formatted_example = self._format_dict_to_string(example.dict())
|
|
elif isinstance(example, dict):
|
|
formatted_example = self._format_dict_to_string(example)
|
|
else:
|
|
formatted_example = str(example)
|
|
self.template.examples.pop(0)
|
|
self.template.examples.append({self.example_input_key: formatted_example})
|
|
|
|
def generate(self, subject: str, runs: int, *args: Any, **kwargs: Any) -> List[str]:
|
|
"""Generate synthetic data using the given subject string.
|
|
|
|
Args:
|
|
subject (str): The subject the synthetic data will be about.
|
|
runs (int): Number of times to generate the data.
|
|
extra (str): Extra instructions for steerability in data generation.
|
|
|
|
Returns:
|
|
List[str]: List of generated synthetic data.
|
|
|
|
Usage Example:
|
|
>>> results = generator.generate(subject="climate change", runs=5,
|
|
extra="Focus on environmental impacts.")
|
|
"""
|
|
if self.llm_chain is None:
|
|
raise ValueError(
|
|
"llm_chain is none, either set either llm_chain or llm at generator "
|
|
"construction"
|
|
)
|
|
for _ in range(runs):
|
|
result = self.llm_chain.run(subject=subject, *args, **kwargs)
|
|
self.results.append(result)
|
|
self._update_examples(result)
|
|
return self.results
|
|
|
|
async def agenerate(
|
|
self, subject: str, runs: int, extra: str = "", *args: Any, **kwargs: Any
|
|
) -> List[str]:
|
|
"""Generate synthetic data using the given subject asynchronously.
|
|
|
|
Note: Since the LLM calls run concurrently,
|
|
you may have fewer duplicates by adding specific instructions to
|
|
the "extra" keyword argument.
|
|
|
|
Args:
|
|
subject (str): The subject the synthetic data will be about.
|
|
runs (int): Number of times to generate the data asynchronously.
|
|
extra (str): Extra instructions for steerability in data generation.
|
|
|
|
Returns:
|
|
List[str]: List of generated synthetic data for the given subject.
|
|
|
|
Usage Example:
|
|
>>> results = await generator.agenerate(subject="climate change", runs=5,
|
|
extra="Focus on env impacts.")
|
|
"""
|
|
|
|
async def run_chain(
|
|
subject: str, extra: str = "", *args: Any, **kwargs: Any
|
|
) -> None:
|
|
if self.llm_chain is not None:
|
|
result = await self.llm_chain.arun(
|
|
subject=subject, extra=extra, *args, **kwargs
|
|
)
|
|
self.results.append(result)
|
|
|
|
await asyncio.gather(
|
|
*(run_chain(subject=subject, extra=extra) for _ in range(runs))
|
|
)
|
|
return self.results
|