mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
3a78450883
some changes were made to experimental, porting them over
66 lines
1.9 KiB
Python
66 lines
1.9 KiB
Python
"""Experimental implementation of jsonformer wrapped LLM."""
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
|
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
|
from pydantic import Field, root_validator
|
|
|
|
if TYPE_CHECKING:
|
|
import jsonformer
|
|
|
|
|
|
def import_jsonformer() -> jsonformer:
|
|
"""Lazily import jsonformer."""
|
|
try:
|
|
import jsonformer
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import jsonformer python package. "
|
|
"Please install it with `pip install jsonformer`."
|
|
)
|
|
return jsonformer
|
|
|
|
|
|
class JsonFormer(HuggingFacePipeline):
|
|
"""Jsonformer wrapped LLM using HuggingFace Pipeline API.
|
|
|
|
This pipeline is experimental and not yet stable.
|
|
"""
|
|
|
|
json_schema: dict = Field(..., description="The JSON Schema to complete.")
|
|
max_new_tokens: int = Field(
|
|
default=200, description="Maximum number of new tokens to generate."
|
|
)
|
|
debug: bool = Field(default=False, description="Debug mode.")
|
|
|
|
@root_validator
|
|
def check_jsonformer_installation(cls, values: dict) -> dict:
|
|
import_jsonformer()
|
|
return values
|
|
|
|
def _call(
|
|
self,
|
|
prompt: str,
|
|
stop: Optional[List[str]] = None,
|
|
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
|
**kwargs: Any,
|
|
) -> str:
|
|
jsonformer = import_jsonformer()
|
|
from transformers import Text2TextGenerationPipeline
|
|
|
|
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
|
|
|
|
model = jsonformer.Jsonformer(
|
|
model=pipeline.model,
|
|
tokenizer=pipeline.tokenizer,
|
|
json_schema=self.json_schema,
|
|
prompt=prompt,
|
|
max_number_tokens=self.max_new_tokens,
|
|
debug=self.debug,
|
|
)
|
|
text = model()
|
|
return json.dumps(text)
|