mirror of
https://github.com/hwchase17/langchain
synced 2024-11-08 07:10:35 +00:00
02430e25b6
- **Description**: [BagelDB](bageldb.ai) a collaborative vector database. Integrated the bageldb PyPi package with langchain with related tests and code. - **Issue**: Not applicable. - **Dependencies**: `betabageldb` PyPi package. - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai) We ran `make format`, `make lint` and `make test` locally. Followed the contribution guideline thoroughly https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md --------- Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
301 lines
7.2 KiB
Plaintext
301 lines
7.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# BagelDB\n",
|
|
"\n",
|
|
"> [BagelDB](https://www.bageldb.ai/) (`Open Vector Database for AI`), is like GitHub for AI data.\n",
|
|
"It is a collaborative platform where users can create,\n",
|
|
"share, and manage vector datasets. It can support private projects for independent developers,\n",
|
|
"internal collaborations for enterprises, and public contributions for data DAOs.\n",
|
|
"\n",
|
|
"### Installation and Setup\n",
|
|
"\n",
|
|
"```bash\n",
|
|
"pip install betabageldb\n",
|
|
"```\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create VectorStore from texts"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.vectorstores import Bagel\n",
|
|
"\n",
|
|
"texts = [\"hello bagel\", \"hello langchain\", \"I love salad\", \"my car\", \"a dog\"]\n",
|
|
"# create cluster and add texts\n",
|
|
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Document(page_content='hello bagel', metadata={}),\n",
|
|
" Document(page_content='my car', metadata={}),\n",
|
|
" Document(page_content='I love salad', metadata={})]"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# similarity search\n",
|
|
"cluster.similarity_search(\"bagel\", k=3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[(Document(page_content='hello bagel', metadata={}), 0.27392977476119995),\n",
|
|
" (Document(page_content='my car', metadata={}), 1.4783176183700562),\n",
|
|
" (Document(page_content='I love salad', metadata={}), 1.5342965126037598)]"
|
|
]
|
|
},
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# the score is a distance metric, so lower is better\n",
|
|
"cluster.similarity_search_with_score(\"bagel\", k=3)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# delete the cluster\n",
|
|
"cluster.delete_cluster()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create VectorStore from docs"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from langchain.document_loaders import TextLoader\n",
|
|
"from langchain.text_splitter import CharacterTextSplitter\n",
|
|
"\n",
|
|
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
|
"documents = loader.load()\n",
|
|
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
|
"docs = text_splitter.split_documents(documents)[:10]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 36,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# create cluster with docs\n",
|
|
"cluster = Bagel.from_documents(cluster_name=\"testing_with_docs\", documents=docs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# similarity search\n",
|
|
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
|
"docs = cluster.similarity_search(query)\n",
|
|
"print(docs[0].page_content[:102])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Get all text/doc from Cluster"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 53,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"texts = [\"hello bagel\", \"this is langchain\"]\n",
|
|
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts)\n",
|
|
"cluster_data = cluster.get()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"dict_keys(['ids', 'embeddings', 'metadatas', 'documents'])"
|
|
]
|
|
},
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# all keys\n",
|
|
"cluster_data.keys()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"{'ids': ['578c6d24-3763-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" '578c6d25-3763-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" 'fb2fc7d8-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" 'fb2fc7d9-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" '6b40881a-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" '6b40881b-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" '581e691e-3762-11ee-a8ab-b7b7b34f99ba',\n",
|
|
" '581e691f-3762-11ee-a8ab-b7b7b34f99ba'],\n",
|
|
" 'embeddings': None,\n",
|
|
" 'metadatas': [{}, {}, {}, {}, {}, {}, {}, {}],\n",
|
|
" 'documents': ['hello bagel',\n",
|
|
" 'this is langchain',\n",
|
|
" 'hello bagel',\n",
|
|
" 'this is langchain',\n",
|
|
" 'hello bagel',\n",
|
|
" 'this is langchain',\n",
|
|
" 'hello bagel',\n",
|
|
" 'this is langchain']}"
|
|
]
|
|
},
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# all values and keys\n",
|
|
"cluster_data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"cluster.delete_cluster()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Create cluster with metadata & filter using metadata"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 63,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[(Document(page_content='hello bagel', metadata={'source': 'notion'}), 0.0)]"
|
|
]
|
|
},
|
|
"execution_count": 63,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"texts = [\"hello bagel\", \"this is langchain\"]\n",
|
|
"metadatas = [{\"source\": \"notion\"}, {\"source\": \"google\"}]\n",
|
|
"\n",
|
|
"cluster = Bagel.from_texts(cluster_name=\"testing\", texts=texts, metadatas=metadatas)\n",
|
|
"cluster.similarity_search_with_score(\"hello bagel\", where={\"source\": \"notion\"})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 64,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# delete the cluster\n",
|
|
"cluster.delete_cluster()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.12"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|