langchain/docs/extras/integrations/llms/cerebriumai_example.ipynb
2023-07-23 23:23:16 -07:00

168 lines
3.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# CerebriumAI\n",
"\n",
"`Cerebrium` is an AWS Sagemaker alternative. It also provides API access to [several LLM models](https://docs.cerebrium.ai/cerebrium/prebuilt-models/deployment).\n",
"\n",
"This notebook goes over how to use Langchain with [CerebriumAI](https://docs.cerebrium.ai/introduction)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install cerebrium\n",
"The `cerebrium` package is required to use the `CerebriumAI` API. Install `cerebrium` using `pip3 install cerebrium`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install the package\n",
"!pip3 install cerebrium"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from langchain.llms import CerebriumAI\n",
"from langchain import PromptTemplate, LLMChain"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set the Environment API Key\n",
"Make sure to get your API key from CerebriumAI. See [here](https://dashboard.cerebrium.ai/login). You are given a 1 hour free of serverless GPU compute to test different models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.environ[\"CEREBRIUMAI_API_KEY\"] = \"YOUR_KEY_HERE\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the CerebriumAI instance\n",
"You can specify different parameters such as the model endpoint url, max length, temperature, etc. You must provide an endpoint url."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = CerebriumAI(endpoint_url=\"YOUR ENDPOINT URL HERE\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create a Prompt Template\n",
"We will create a prompt template for Question and Answer."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initiate the LLMChain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the LLMChain\n",
"Provide a question and run the LLMChain."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = \"What NFL team won the Super Bowl in the year Justin Beiber was born?\"\n",
"\n",
"llm_chain.run(question)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"vscode": {
"interpreter": {
"hash": "a0a0263b650d907a3bfe41c0f8d6a63a071b884df3cfdc1579f00cdc1aed6b03"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}